全文获取类型
收费全文 | 1033篇 |
免费 | 100篇 |
国内免费 | 443篇 |
专业分类
安全科学 | 109篇 |
废物处理 | 23篇 |
环保管理 | 125篇 |
综合类 | 732篇 |
基础理论 | 211篇 |
污染及防治 | 256篇 |
评价与监测 | 77篇 |
社会与环境 | 11篇 |
灾害及防治 | 32篇 |
出版年
2023年 | 16篇 |
2022年 | 29篇 |
2021年 | 43篇 |
2020年 | 35篇 |
2019年 | 32篇 |
2018年 | 47篇 |
2017年 | 57篇 |
2016年 | 74篇 |
2015年 | 89篇 |
2014年 | 88篇 |
2013年 | 94篇 |
2012年 | 98篇 |
2011年 | 86篇 |
2010年 | 77篇 |
2009年 | 83篇 |
2008年 | 66篇 |
2007年 | 93篇 |
2006年 | 89篇 |
2005年 | 66篇 |
2004年 | 49篇 |
2003年 | 41篇 |
2002年 | 35篇 |
2001年 | 37篇 |
2000年 | 34篇 |
1999年 | 32篇 |
1998年 | 17篇 |
1997年 | 12篇 |
1996年 | 14篇 |
1995年 | 13篇 |
1994年 | 7篇 |
1993年 | 5篇 |
1992年 | 8篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有1576条查询结果,搜索用时 15 毫秒
871.
872.
冬小麦种植面积空间抽样单元尺寸优化设计 总被引:5,自引:5,他引:5
抽样单元尺寸是空间抽样调查方案设计过程中的关键要素。合理的抽样单元尺寸对降低抽样调查费用、改善抽样外推总体精度具有重要意义。为实现农作物种植面积空间抽样调查中抽样单元尺寸的优化设计,论文以河南省为研究区,以冬小麦种植面积为研究对象,选取正方形网格作为抽样单元,遵循传统抽样理论中抽样单元间相互独立原则,通过分析不同抽样单元尺寸与对应该尺寸下的抽样框内总体单元间全局空间自相关指数(Moran’s I)的相关关系,进行了抽样单元尺寸的初选。为最终实现抽样单元尺寸优选,基于初选的8种抽样单元尺寸,分别构建抽样框,采用以抽样单元内冬小麦面积占单元面积比例(麦土比)为分层标志的分层抽样方法进行了研究区冬小麦种植面积空间抽样样本抽选、总体外推及误差估计试验研究,结果表明:抽样比随抽样单元尺寸的增大而增大;8种抽样单元尺寸下的外推总体相对误差和变异系数均较小,变化范围分别为3.82%~5.75%和3.76%~4.69%;以抽样调查费用和抽样误差为抽样效率评价指标,优选出抽样单元尺寸为20 000 m×20 000 m时,进行研究区冬小麦种植面积抽样调查的效率最高。 相似文献
873.
采用湿热水解技术处理餐厨垃圾,研究不同湿热预处理温度与时间下餐厨垃圾w(VS)(VS为挥发性固体)、ρ(CODsCr)(CODs为溶解性化学需氧量)、ρ(TOC)、ρ(TN)等指标的变化,以评价湿热预处理对餐厨垃圾厌氧产氢效能的影响. 在此基础上,结合厌氧产氢动力学分析,确定厌氧发酵产氢的最佳湿热预处理条件. 结果表明:湿热预处理温度、时间对餐厨垃圾可浮油脱出量、w(VS)具有显著影响. 餐厨垃圾湿热预处理后ρ(CODsCr)、ρ(TOC)、ρ(TN)变化情况与w(VS)呈负相关. 餐厨垃圾经90℃湿热预处理30min后,可浮油脱出量为37.5mL/kg,w(VS)/w(TS)为95.12%,最大比产氢量达242.1mL/g,最大产氢速率为12.46mL/h,累积产氢率达0.88mol/mol,厌氧产氢启动时间为12.85h. 说明对餐厨垃圾进行适度的湿热预处理可有效提高有机物溶解性与生物可利用效率,进而提高厌氧发酵累积产氢量与产氢速率. 综合能耗、产出等因素,湿热预处理温度90℃,处理时长30min,为餐厨垃圾厌氧发酵产氢的最佳湿热预处理条件. 相似文献
874.
通过实验研究了铁还原环境下四氯乙烯(PCE)的生物降解。以醋酸为共代谢基质,在20℃时,PCE可以顺序脱氯为TCE和DCEs。反应速率常数为0.2489d-1,半衰期为2.78d。在实验的第1天和第10天分别检测到了TCE和DCEs。TCE最高浓度为358.98nmol/L,是最主要的反应产物。碳平衡为88.7%~109.3%。在13d的实验周期中,微生物的数量和活性都有所增加。同时研究了不同的影响因素,如低温、不同pH和电子受体对PCE生物降解的影响。结果表明,在12℃时,PCE可以脱氯为TCE,半衰期为6.45d,降解速率为0.1075d-1,较20℃时的降解速率要低。脱氯的最佳pH值在7.0左右,较高和较低的pH值均会抑制脱氯微生物的活性。加入不同电子受体NO3-和SO42-,PCE脱氯受到不同程度的抑制,前者可能是由于NO3-是相对强的氧化剂,造成微环境中的氧化还原电位升高;后者则可能是SO42-的存在,会抑制脱氯菌的作用。 相似文献
875.
农作物秸秆结构复杂,酸化效果可能与传统糖类物料不一致。为方便考察纤维素类物料厌氧酸化效果,文章选取成分相对单一的滤纸为原料,考察了酶活浓度、反应时间、酵母菌接种量(F/M)等因素对纤维素经纤维素酶和酵母菌联合作用后的乙醇、乙酸产量的影响,及对厌氧发酵过程的影响分析。结果表明,当纤维素酶单独作用时,酶活浓度120 U/g、温度50℃、pH值4.8、水解24 h时可获得最大葡萄糖产率:73.7 mg/g(转化率为24.9%);纤维素酶和酵母菌分步糖化发酵(separate hydrolysis and fermentation,SHF)工艺中,F/M值为2:1、反应96 h可得最大乙醇产率:119.3 mg/g(转化率为42%);纤维素酶和酵母菌同步糖化发酵(simultaneous saccharification andfermentation,SSF)工艺中,F/M值为1:2、反应120 h得到最大乙醇产率:396.0 mg/g(转化率为58.2%)。F/M值为2:1、反应120 h时,SSF工艺比SHF工艺的乙醇产量提高了34.91%。 相似文献
876.
兰州市夏秋季颗粒物谱分布特征研究 总被引:6,自引:6,他引:6
采用APS-3321空气动力学粒径谱仪对兰州市2010年8~10月0.5~20μm大气颗粒物浓度及其谱分布进行了实时监测,并通过聚类分析方法结合气象观测数据对体积浓度谱特征及其影响因素进行了分析.以阐明兰州市夏秋季不同粒径段颗粒物浓度水平和粒谱分布特征及其成因.结果表明,0.5~20μm大气颗粒物小时平均数浓度、表面积浓度和体积浓度分别为(108.1±92.2)个.cm-3、(282.9±267.9)μm2.cm-3和(92.2±127.3)μm3.cm-3,细粒子(0.5~2.5μm)分别占0.5~20μm大气颗粒物数浓度、表面积浓度和体积浓度的98.7%、73.8%和52.9%.观测期间数浓度谱呈单峰分布,峰值出现在积聚模态,表面积浓度谱和体积浓度谱呈双峰型,峰值分别位于积聚模态和粗模态.颗粒物体积浓度谱主要有7类代表不同源和气象条件影响的分布型.受浮尘天气和局地扬尘影响的颗粒物体积谱分布在粗模态有明显的峰,而受机动车直接燃烧排放和二次扬尘影响的颗粒物体积谱分布呈双峰型,峰值分别位于积聚模态和粗模态. 相似文献
877.
为探究气象环境条件对消化系统疾病的影响,结合分布滞后非线性模型与广义相加模型,分析了2009~2011年气象环境要素与北京市消化系统疾病急诊人数的暴露-反应关系.结果显示,气温对消化系统疾病的影响主要体现为“高温效应”,高于25℃的气温其危险度RR随气温升高而增加,且滞后效应能达到10d以上.较为极端的湿度(RH<10%或RH>90%)会显著增加消化系统疾病的发病,并有持久的作用,其与高温结合会形成“高温低湿”和“高温高湿”2种让人不适的情况.0~2m/s的风速在短的滞后期(5d)最能增加发病危险性.而3~4m/s的风速对疾病的危险性小,说明适度的风速不影响健康.浓度高于200μg/m3的PM10和浓度高于70μg/m3的 NO2具有即时的危险性(5d内显著);而较高浓度(>55μg/m3)的SO2滞后一定时期后效应更加明显. 相似文献
878.
以厌氧发酵污泥为阳极底物、Cr(VI)为阴极电子受体构建双室微生物燃料电池(MFC),考察厌氧发酵污泥MFC系统处理含铬废水的性能及机理,并与原污泥MFC系统进行比较.发酵污泥MFC系统的开路电压为1.05V,最大功率密度为5722mW/m3,比原污泥MFC系统提高了57.8%.发酵污泥MFC系统的表观内阻为119.1Ω,比原污泥MFC系统降低了8.5%.发酵污泥MFC系统对Cr(VI)的去除符合一级动力学模型,速率常数为0.0514h-1,比原污泥MFC系统提高了36.7%.污泥经厌氧发酵后可溶性有机物浓度增加,产生了大量短链脂肪酸,它们是产电微生物易于摄取的阳极底物,因而提高了MFC系统的产电性能及Cr(VI)去除效果. 相似文献
879.
880.