首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   31篇
  国内免费   6篇
废物处理   2篇
环保管理   156篇
综合类   16篇
基础理论   4篇
污染及防治   1篇
评价与监测   6篇
社会与环境   2篇
  2023年   3篇
  2021年   2篇
  2019年   5篇
  2018年   6篇
  2017年   10篇
  2016年   14篇
  2015年   4篇
  2014年   11篇
  2013年   9篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
91.
大兴安岭地区岛状林沼泽CH4和N2O排放及其影响因子   总被引:1,自引:0,他引:1  
沼泽湿地CH4、N2O的排放,尤其是高纬度沼泽湿地,对于评估北半球温室气体排放具有重要意义。在2011 年生长季利用野外静态箱-气相色谱法对大兴安岭地区两种典型湿地岛状林沼泽(白桦和兴安落叶松岛状林沼泽)CH4、N2O排放通量进行了研究,分析CH4、N2O排放通量的季节特征,并探讨温度、水位主控因子对CH4、N2O排放通量的影响。结果表明:①生长季白桦(Betula platyphylla)和兴安落叶松(Larix gmelinii)岛状林沼泽CH4通量除春季白桦岛状林沼泽出现排放峰值外,两样地CH4都处于弱吸收现象;N2O排放高峰期分别在初夏、春两季。白桦和兴安落叶松岛状林沼泽CH4、N2O 排放通量依次为-60.61、-93.21 μg·m-2 ·h-1 和82.92、 45.06 μg·m-2 ·h-1。②兴安落叶松岛状林沼泽生长季CH4、N2O 排放通量分别与10~40 cm 和 15~40 cm土壤温度呈显著负相关性;而白桦岛状林沼泽CH4排放通量仅与40 cm土壤温度呈显著负相关,两种类型沼泽均与土壤含水率未呈显著相关性。③白桦和兴安落叶松岛状林沼泽生长季CH4、N2O总通量分别为-2.21、-2.74 kg·hm-2和2.74、0.93 kg·hm-2;表现为大气CH4弱吸收的汇,N2O弱排放的源。  相似文献   
92.
中国七大水系沉积物中典型重金属生态风险评估   总被引:5,自引:1,他引:4       下载免费PDF全文
为评价国内水系重金属生态风险,根据2000-2015年国内外文献报道,选择中国七大水系--长江水系、黄河水系、辽河水系、松花江水系、海河水系、淮河水系和珠江水系的沉积物,以Cu、Cd、Pb、Zn、Ni等5种典型重金属为研究目标,对其质量分数及分布特征进行了系统分析;并利用生物效应数据库法对5种重金属的淡水水体沉积物质量基准值--TEL(临界效应浓度)和PEL(可能效应浓度)进行了更新.结果表明:Cu、Cd、Pb、Zn、Ni的新TEL分别为56.2、2.58、47.3、79.9和35.4 mg/kg,新PEL分别为141、19.6、200、461和78.6 mg/kg.七大水系以珠江水系沉积物中Cu、Cd、Pb、Zn、Ni的浓度最高,海河水系和黄河水系次之,而长江水系、辽河水系、松花江水系和淮河水系沉积物中重金属浓度较低.通过比较生物效应数据库法更新的沉积物质量基准值与实际沉积物重金属浓度,评价中国重点水系沉积物生态风险所得结论与国内外研究结果基本一致.研究显示,重金属对中国七大水系沉积物的污染大多处于生态风险较小或风险不确定的水平,其中仅有1.15%~7.60%的采样点重金属生态风险较高;七大水系以珠江水系沉积物生态风险最高,其5种重金属质量分数最高,并且超过各自PEL的采样点占比在4.41%~26.8%之间;其次,海河水系沉积物也存在一定的重金属生态风险,其Cu、Zn和Ni的质量分数较高,超过各自PEL的采样点分别占14.1%、15.2%和14.8%.   相似文献   
93.
Rebich, Richard A., Natalie A. Houston, Scott V. Mize, Daniel K. Pearson, Patricia B. Ging, and C. Evan Hornig, 2011. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico From Streams in the South‐Central United States. Journal of the American Water Resources Association (JAWRA) 47(5):1061‐1086. DOI: 10.1111/j.1752‐1688.2011.00583.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South‐Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas‐White‐Red, and Texas‐Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two‐thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%).  相似文献   
94.
Forestry Best Management Practices (BMPs) were developed to protect water quality. In the eastern US, those BMPs were often expanded to include maintenance of site productivity. Generally, BMPs recommend the use of pre-harvest planning and careful design for construction of roads and other activities that expose bare soil, minimizing trafficking and areas of bare soil, maintaining streamside management zones, ensuring rapid revegetation following harvesting, minimizing soil disturbance, and ameliorating severe trafficking with site preparation. This review of peer-reviewed research from the past 20 years examined the effects of forest harvesting and site preparation on water quality and site productivity in the eastern US. The review was subdivided into areas having relatively similar physiography and land management (New England, Lake States, Appalachian Plateau, Ridge and Valley, Blue Ridge, Piedmont, Atlantic Coastal Plain, Gulf Coastal Plain, and Ouachitas-Ozarks). In general, data from steeper physiographic regions indicated that forest harvesting and site preparation can increase erosion, sediment and nutrient losses to streams. However, the quantities introduced into streams tended to be relatively low, generally below the values that are considered acceptable for alternative land uses. Also most research indicated that water quality recovers within two to five years following forest operation disturbances, particularly if BMPs are employed. Research from the less mountainous and often more poorly drained Lake States and Coastal Plain regions indicated that soil compaction and rutting may or may not cause site productivity effects, depending on soil types, natural ameliorative properties and site preparation. Overall, the research supports the forestry BMPs recommended in the eastern states.  相似文献   
95.
ABSTRACT: A synthetic triangular hyetograph for a large data base of Texas rainfall and runoff is needed. A hyetograph represents the temporal distribution of rainfall intensity at a point or over a watershed during a storm. Synthetic hyetographs are estimates of the expected time distribution for a design storm and principally are used in small watershed hydraulic structure design. A data base of more than 1,600 observed cumulative hyetographs that produced runoff from 91 small watersheds (generally less than about 50 km2) was used to provide statistical parameters for a simple triangular shaped hyetograph model. The model provides an estimate of the average hyetograph in dimensionless form for storm durations of 0 to 24 hours and 24 to 72 hours. As a result of this study, the authors concluded that the expected dimensionless cumulative hyetographs of 0 to 12 hour and 12 to 24 hour durations were sufficiently similar to be combined with minimal information loss. The analysis also suggests that dimensionless cumulative hyetographs are independent of the frequency level or return period of total storm depth and thus are readily used for many design applications. The two triangular hyetographs presented are intended to enhance small watershed design practice in applicable parts of Texas.  相似文献   
96.
A constructed wetland (CW) was strategically placed to treat nitrates in groundwater as part of a watershed‐based farmer engagement process. Using stream water quality data collected before and after installation, this CW was found to reduce stream concentrations of nitrogen from nitrate (NO3‐N) during the growing season by about 0.14 mg/l at mean streamflow, a 17% reduction. Based upon realistic ecological and economic assumptions, about 80 kg of NO3‐N were removed annually by the CW at a cost of around US$30/kg. This per unit cost is at the low range of small wastewater treatment plant costs for nitrates, but higher than the costs of reduced fertilizer application.  相似文献   
97.
We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay‐wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.  相似文献   
98.
Establishing aquatic restoration priorities using a watershed approach   总被引:11,自引:0,他引:11  
Since the passage of the Clean Water Act in 1972, the United States has made great strides to reduce the threats to its rivers, lakes, and wetlands from pollution. However, despite our obvious successes, nearly half of the nation's surface water resources remain incapable of supporting basic aquatic values or maintaining water quality adequate for recreational swimming. The Clean Water Act established a significant federal presence in water quality regulation by controlling point and non-point sources of pollution. Point-sources of pollution were the major emphasis of the Act, but Section 208 specifically addressed non-point sources of pollution and designated silviculture and livestock grazing as sources of non-point pollution. Non-point source pollutants include runoff from agriculture, municipalities, timber harvesting, mining, and livestock grazing. Non-point source pollution now accounts for more than half of the United States water quality impairments. To successfully improve water quality, restoration practitioners must start with an understanding of what ecosystem processes are operating in the watershed and how they have been affected by outside variables. A watershed-based analysis template developed in the Pacific Northwest can be a valuable aid in developing that level of understanding. The watershed analysis technique identifies four ecosystem scales useful to identify stream restoration priorities: region, basin, watershed, and site. The watershed analysis technique is based on a set of technically rigorous and defensible procedures designed to provide information on what processes are active at the watershed scale, how those processes are distributed in time and space. They help describe what the current upland and riparian conditions of the watershed are and how these conditions in turn influence aquatic habitat and other beneficial uses. The analysis is organized as a set of six steps that direct an interdisciplinary team of specialists to examine the biotic and abiotic processes influencing aquatic habitat and species abundance. This process helps develop an understanding of the watershed within the context of the larger ecosystem. The understanding gained can then be used to identify and prioritize aquatic restoration activities at the appropriate temporal and spatial scale. The watershed approach prevents relying solely on site-level information, a common problem with historic restoration efforts. When the watershed analysis process was used in the Whitefish Mountains of northwest Montana, natural resource professionals were able to determine the dominant habitat forming processes important for native fishes and use that information to prioritize, plan, and implement the appropriate restoration activities at the watershed scale. Despite considerable investments of time and resources needed to complete an analysis at the watershed scale, the results can prevent the misdiagnosis of aquatic problems and help ensure that the objectives of aquatic restoration will be met.  相似文献   
99.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   
100.
ABSTRACT: The Grand and Saugeen Rivers in southern Ontario were chosen for study as pilot watersheds under the Pollution From Land Use Activities Reference Group (PLUARG) study. The pilot watersheds have adjacent headwater areas and are physically similar in geology, physiography, and climate. Significant differences in water quality between the watersheds at their outlets are attributed to land use and population differences. The major pollutant sources in the two pilot watersheds were identified as trace elements from urban runoff and point source discharges; phosphorus from agricultural and urban runoff and private waste disposal; chloride from transportation corridors; and sediment and nitrogen from agricultural runoff. Yields at the watershed outlets were similar for suspended sediment and two to three times as high in the Grand River for phosphours, nitrogen, chloride, and lead. The higher phosphorus and nitrogen levels were attributed to larger point source inputs and the higher proportion of agricultural activity, comprising 75 percent of the Grand River basin compared to 64 percent in the Saugeen River basin. Similarly, the higher chloride and lead levels were attributed to an order of magnitude larger population and three times as much urban land in the Grand River basin compared to the Saugeen River basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号