首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   181篇
  国内免费   379篇
安全科学   37篇
废物处理   32篇
环保管理   896篇
综合类   888篇
基础理论   137篇
污染及防治   97篇
评价与监测   104篇
社会与环境   44篇
灾害及防治   16篇
  2024年   15篇
  2023年   43篇
  2022年   52篇
  2021年   52篇
  2020年   66篇
  2019年   73篇
  2018年   60篇
  2017年   77篇
  2016年   90篇
  2015年   87篇
  2014年   87篇
  2013年   115篇
  2012年   109篇
  2011年   96篇
  2010年   86篇
  2009年   65篇
  2008年   54篇
  2007年   80篇
  2006年   74篇
  2005年   79篇
  2004年   62篇
  2003年   81篇
  2002年   66篇
  2001年   53篇
  2000年   44篇
  1999年   61篇
  1998年   49篇
  1997年   34篇
  1996年   46篇
  1995年   23篇
  1994年   29篇
  1993年   17篇
  1992年   18篇
  1991年   20篇
  1990年   10篇
  1989年   10篇
  1988年   7篇
  1987年   15篇
  1986年   7篇
  1985年   14篇
  1982年   12篇
  1980年   15篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1975年   12篇
  1973年   11篇
  1972年   12篇
  1971年   15篇
排序方式: 共有2251条查询结果,搜索用时 31 毫秒
91.
地下水砷污染是全球化环境问题.本文基于阿克苏地区平原区2017年75个地下水砷实测含量进行分析.结果表明,研究区地下水砷含量变化范围为ND-98.70 μg?L-1,平均值为9.42μg?L-1,超标率达26.7%.水平方向上,高砷地下水主要集中在研究区的中部偏南一带;垂直方向上,山麓斜坡冲洪积砾质平原潜水区地下水砷含...  相似文献   
92.
在碎石土类边坡中常常发育稳定的地下水管网排泄系统,它们对控制地下水水位上升,保持边坡稳定十分重要。以官家滑坡为例,通过对滑坡稳定性系数有关的各因素敏感性分析,发现地下水是影响边坡变形破坏以及复发破坏的最主要因素。当坡脚开挖或坡体堆载时,会破坏管道状地下水排泄系统,降雨入渗导致地下水水位升高,从而引起坡体内孔隙压力比、水头高度和水力坡度增大,使潜在滑面上的孔隙水压升高,影响碎石土边坡的稳定性;同时,地下水位的升高降低了土体的内摩擦角,而因素敏感性分析发现,内摩擦角对边坡失稳具有极其重要的影响。在官家滑坡的后期治理中,治水作为主要工程措施的理念已经得到很好的贯彻,效果十分明显。  相似文献   
93.
Collaborative governance is on the rise in the United States. This management approach brings together state and non-state actors for environmental decision-making, and it is frequently used in California for decisions regarding local groundwater management. This study examines groundwater decision-making groups and practices in a central California coastal community to understand whether groups meet specific collaborative governance criteria and whether and why certain subsets of the population are excluded from groundwater decision-making practices. It also identifies actions for better group inclusion. We find that small farmers, the Hispanic/Latino community, and the general public are often excluded from groundwater decision-making groups and practices due to unawareness, mistrust, and insufficient resources. Education and awareness as well as incentives could help increase inclusion. This study provides insights into more equitable groundwater decision-making groups and practices, and also calls for more critical examination of the current stakeholder approach to decision-making.  相似文献   
94.
Regional municipal water plans typically do not recognize complex coupling patterns or that increased withdrawals in one location can result in changes in water availability in others. We investigated the interaction between urban growth and water availability in the Baltimore metropolitan region where urban growth has occurred beyond the reaches of municipal water systems into areas that rely on wells in low‐productivity Piedmont aquifers. We used the urban growth model SLEUTH and the hydrologic model ParFlow.CLM to evaluate this interaction with urban growth scenarios in 2007 and 2030. We found decreasing groundwater availability outside of the municipal water service area. Within the municipal service area we found zones of increasing storage resulting from increased urban growth, where reduced vegetation cover dominated the effect of urbanization on the hydrologic cycle. We also found areas of decreasing storage, where expanding impervious surfaces played a larger role. Although the magnitude of urban growth and change in water availability for the simulation period were generally small, there was considerable spatial heterogeneity of changes in subsurface storage. This suggests that there are locally concentrated areas of groundwater sensitivity to urban growth where water shortages could occur or where drying up of headwater streams would be more likely. The simulation approach presented here could be used to identify early warning indicators of future risk.  相似文献   
95.
A long‐standing “Digital Divide” in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time‐varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long‐time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed “data rods,” are pre‐generated or generated on‐the‐fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on “data curtains.” The on‐the‐fly generation of data rods uses “data cubes,” NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.  相似文献   
96.
Shared, trusted, timely data are essential elements for the cooperation needed to optimize economic, ecologic, and public safety concerns related to water. The Open Water Data Initiative (OWDI) will provide a fully scalable platform that can support a wide variety of data from many diverse providers. Many of these will be larger, well‐established, and trusted agencies with a history of providing well‐documented, standardized, and archive‐ready products. However, some potential partners may be smaller, distributed, and relatively unknown or untested as data providers. The data these partners will provide are valuable and can be used to fill in many data gaps, but can also be variable in quality or supplied in nonstandardized formats. They may also reflect the smaller partners' variable budgets and missions, be intermittent, or of unknown provenance. A challenge for the OWDI will be to convey the quality and the contextual “fitness” of data from providers other than the most trusted brands. This article reviews past and current methods for documenting data quality. Three case studies are provided that describe processes and pathways for effective data‐sharing and publication initiatives. They also illustrate how partners may work together to find a metadata reporting threshold that encourages participation while maintaining high data integrity. And lastly, potential governance is proposed that may assist smaller partners with short‐ and long‐term participation in the OWDI.  相似文献   
97.
The phase of precipitation at the land surface is critical to determine the timing and amount of water available for hydrological and ecological systems. However, there are few techniques to directly observe the precipitation phase and many prediction tools apply a single temperature threshold (e.g., 0°C) to determine phase. In this paper, we asked two questions: (1) what is the accuracy of default and station optimized daily temperature thresholds for predicting precipitation phase and (2) what are the regions and conditions in which typical temperature‐based precipitation phase predictions are most suited. We developed a ground truth dataset of rain vs. snow using an expert decision‐making system based on precipitation, snow depth, and snow water equivalent observations. This dataset was used to evaluate the accuracy of three temperature‐threshold‐based techniques of phase classification. Optimizing the temperature threshold improved the prediction of precipitation phase by 34% compared to using 0°C threshold. Developing a temperature threshold based on station elevation improved the error by 12% compared with using the 0°C temperature threshold. We also found the probability of snow as a function of temperature differed among ecoregions, which suggests a varied response to future climate change. These results highlight a current weakness in our ability to predict the effects of regional warming that could have uneven impacts on water and ecological resources.  相似文献   
98.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
99.
Two industrial sites were investigated based on years of available hydrogeologic information and monitoring data for soil and groundwater. Collected data were forensically evaluated using age-dating and fingerprinting methods. The previous business uses of the project sites were as a gas station, laundry/dry-cleaning service, and car wash with petroleum underground storage tanks (USTs). As a result, these sites were exposed to a number of toxic contaminants at relatively high concentrations. Source control was necessary for successful remediation and the ultimate removal of the remaining compounds from these industrial sites. Although contaminated soil around the source was excavated during the remedial action and the high concentrations of contaminants were reduced, typical groundwater contaminants such as petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, xylenes (BTEX), and oxygenates including methyl tert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA) were persistently found at the studied sites around the source points. The plume and concentration of contaminants had changed their shapes and strength for all monitoring periods. Thus, additional source control seems to be a requirement for the complete removal of source contamination, which must be ascertained with groundwater and soil monitoring on a regular time base. For the study sites, monitored natural attenuation was relatively feasible for the long-term plan; however, it did not offer a perfect remediation solution for an ultimate goal because of residual toxic compounds that might have affected the surrounding residential areas at higher concentrations than their health limits. Therefore, as a remediation strategy, the combination of clean-up technology and natural attenuation with monitoring activities are more highly recommended than either clean-up or natural attenuation used separately.  相似文献   
100.
The assessment of aquifer vulnerability is a very important task, especially in agricultural areas because the quality and availability of groundwater affects both the sustainability of agriculture and the quality of life. In this study, an integrated approach is considered, with the use of the generic and agricultural DRASTIC models as well as a geographic information system (GIS), to assess groundwater vulnerability in the agricultural area of Barrax, in the province of Albacete, in Spain. Seven parameters—depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone media, and hydraulic conductivity of the aquifer (DRASTIC)—have been considered as weighted layers to enable an accurate groundwater risk mapping. The results of the generic DRASTIC model indicated very low vulnerability to contamination for Barrax groundwater due to limited urban and industrial development in the wider area. However, agricultural activities impose pressure to groundwater resources and the results of the agricultural DRASTIC model show that 6.86% of the study area is characterized by very high, 2.29% by high, 47.28% by medium, 38.28% by low, and the remaining 5.29% by no vulnerability to groundwater contamination. The distribution of nitrate concentration in groundwater in the area under study is quite well correlated with the agricultural DRASTIC vulnerability index. Sensitivity analysis was also performed to acknowledge statistical uncertainty in the estimation of each parameter used, to assess its impact, and thus to identify the most critical parameters that require further investigation. Depth to water and impact of vadose zone are the parameters that had the most noticeable impact on the generic DRASTIC vulnerability index followed by the soil media and topography. In contrast, the agricultural DRASTIC method is more sensitive to the removal of the depth to water parameter followed by the topography and the soil media parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号