首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   771篇
  免费   68篇
  国内免费   22篇
安全科学   8篇
废物处理   6篇
环保管理   732篇
综合类   66篇
基础理论   19篇
污染及防治   2篇
评价与监测   13篇
社会与环境   13篇
灾害及防治   2篇
  2023年   10篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   13篇
  2018年   16篇
  2017年   25篇
  2016年   23篇
  2015年   20篇
  2014年   16篇
  2013年   24篇
  2012年   23篇
  2011年   21篇
  2010年   19篇
  2009年   19篇
  2008年   19篇
  2007年   33篇
  2006年   27篇
  2005年   31篇
  2004年   42篇
  2003年   34篇
  2002年   30篇
  2001年   28篇
  2000年   27篇
  1999年   34篇
  1998年   35篇
  1997年   24篇
  1996年   40篇
  1995年   18篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   16篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1987年   15篇
  1985年   8篇
  1983年   4篇
  1982年   12篇
  1981年   6篇
  1980年   15篇
  1979年   6篇
  1978年   7篇
  1976年   4篇
  1975年   8篇
  1974年   2篇
  1973年   5篇
  1972年   6篇
  1971年   8篇
排序方式: 共有861条查询结果,搜索用时 296 毫秒
81.
ABSTRACT: Both L-moment and nonparametric frequency analyses were performed on a series of annual maximum floods from New Brunswick, Canada. The L-moment analysis concluded that the data were generated from a unimodal Generalized Extreme Value (GEV) distribution. However, the nonparametric frequency analysis indicated that a majority of stations followed nonunimodal mixed distributions since peak flows occur during different seasons and are the result of different generating mechanisms. The coupling of L-moment and nonparametric analyses facilitates mixed distribution identification. Thus, the nonparametric method helps in identifying underlying probability distribution, especially when samples arise from mixed distributions.  相似文献   
82.
ABSTRACT: The Central Nebraska Basins (NAWQA) study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Platte River flows are variable in the western part of the study unit because of diversions, but the Loup and Elkhorn Rivers originate in an area of dune sand covered by grassland that generates consistent base flows. More frequent runoff in the eastern part of the study unit also sustains stream flow. Ground water in the study unit has no regional confining units and the system is a water table aquifer throughout. Macroinvertebrate and fish taxa at biological sampling sites in the state were related to stream flow. One of the four wetland complexes identified in the study unit includes habitat for threatened and endangered bird species. The study unit is an agricultural area that includes row crops, both irrigated and nonirrigated in the eastern and southern parts, and rangeland in the Sand Hills of the western part. A water quality assessment will be based on the differences in environmental setting in each of four subunits within the study unit.]  相似文献   
83.
ABSTRACT: The Great Lakes Environmental Research Laboratory developed a semiautomatic software package for making hydrological outlooks for the Great Lakes. These include basin moisture storages, basin runoff, lake heat storage, lake evaporation, heat fluxes, and net lake supplies, one or more full months into the future. The package combines GLERL's rainfall-runoff and lake evaporation models with near real-time data reduction techniques to represent current system states. Users select historical meteorologic record segments as candidate future scenarios to generate deterministic near real-time hydrological outlooks. GLERL has extended the package to make probabilistic outlooks for a decision-maker who must estimate the risk associated with his decisions. GLERL matches National Weather Service meteorologic outlook probabilities by selecting groups of historical meteorologic sequences, and constructs embedded outlook intervals for each hydrologic variable of interest. Interval probabilities are assigned from comparisons over a recent evaluation period. This physically-based approach for generating outlooks offers the ability, as compared to other statistically-based approaches, to incorporate improvements in the understanding, of process dynamics as they occur in the future and to respond reasonably to conditions initial to a forecast (such as heat and moisture storages), not observed in the past.  相似文献   
84.
ABSTRACT Significant parameters for predicting thunderstorm runoff from small semiarid watersheds are determined using data from the Walnut Gulch watershed in southern Arizona. Based on these data, thunderstorm rainfall is dominant over watershed parameters for predicting runoff from multiple linear regression equations. In some cases antecedent moisture added significantly to the models. A technique is developed for estimating precision of predicted values from multiple linear regression equations. The technique involves matrix methods in estimating the variance of mean predicted values from a regression equation. The estimated variance of the mean predicted value is then used to estimate the variance of an individual predicted value. A computer program is developed to implement these matrix methods and to form confidence limits on predicted values based on both a normality assumption and the Chebyshev inequality.  相似文献   
85.
In order to decrease the uncertainty that results in water resource planning and management studies due to the assumed recurrence of historical hydrological sequences, considerable study of stochastic processes in hydrology has taken place during the past 10 or 15 years. The general objective has been to develop a capability for generating a number of valid sequences, each of which could as resonably occur as could a recurrence of past events. A number of serious problems have been encountered, the consequence of which has been a serious lag in the application of stochastic processes to real planning and management problems. These problems include: a. an inability to generate droughts in some cases that are as extreme as have occurred historically, b. the generation of inconsistent values of stream flow at 2 locations on the same stream, c. the lack of mathematical techniques for the management of incomplete data sets, d. a great increase in the required computation for planning and management studies, and e. theoretical and computational difficulties in expanding the scope of stochastic hydrology from monthly quantities to short-period quantities. This paper discusses these problems and various approaches used in attempting their solution.  相似文献   
86.
Rapid economic and industrial development in Taiwan over the past five decades has elevated the islands standing and earned it a place in the group known as the Four Small Dragons of Asia. Such growth, however, has been at the expense of the environment. There are currently nearly 23 million people juggling for space on the small island of 35,873 km2. Aggravating the matter further, the central mountain ranges and hills take up 73.6% of the land area with some 156 peaks surpassing 3,000 m. As a result, most people live in coastal plains which amount to only 9,490 km2. Pressure to move people inland has led to road construction and deforestation, both of which have contributed to an already high denudation rate of topsoil. As a consequence of this, thirteen rivers in Taiwan are now ranked among the top 20 worldwide in terms of sediment yield. Aside from this, the frequency of both floods and droughts increased prior to 1990, perhaps because of deforestation and global warming. Fortunately, the new conservation-orientated forest management policy of 1991 has alleviated the problem, somewhat, and the occurrence of floods and droughts has since decreased. The problem of water shortage, however, has worsened because of the warming trend in atmospheric temperature. Damming may ameliorate the water shortage problem but may affect the shoreline stability, as well as the ecology and water quality in the estuaries. Furthermore, these detrimental effects may go far beyond the estuaries, and even fisheries on the continental shelves may be affected.  相似文献   
87.
Biological, chemical, and physical attributes of aquatic ecosystems are often strongly influenced by groundwater sources. Nonetheless, widespread access to predictions of subsurface contributions to rivers, lakes, and wetlands at a scale useful to environmental managers is generally lacking. In this paper, we describe a neighborhood analysis approach for estimating topographic constraints on spatial patterns of recharge and discharge and discuss how this index has proven useful in research, management, and conservation contexts. The Michigan Rivers Inventory subsurface flux model (MRI-DARCY) used digital elevation and hydraulic conductivity inferred from mapped surficial geology to estimate spatial patterns of hydraulic potential. Model predictions were calculated in units of specific discharge (meters per day) for a 30-m2-cell raster map and interpreted as an index of potential subsurface water flux (shallow groundwater and event through-flow). The model was evaluated by comparison with measurements of groundwater-related attributes at watershed, stream segment, and local spatial scales throughout Lower Michigan (USA). Map-based predictions using MRI-DARCY accounted for 85% of the observed variation in base flow from 128 USGS gauges, 69% of the observed variation in discharge accrual from 48 river segments, and 29% of the residual variation in local groundwater flux from 33 locations as measured by hyporheic temperature profiles after factoring out the effects of climate. Although it does not incorporate any information about the actual water table surface, by quantifying spatial variation of key constraints on groundwater-related attributes, the model provides strata for more intensive study, as well as a useful spatial tool for regional and local conservation planning, fisheries management, wetland characterization, and stream assessment.  相似文献   
88.
Differences between scientist and policy-maker response types and times, or the “how” and “when” of action, constrain effective water resource management in suburbanizing watersheds. Policy-makers are often rushed to find a single policy that can be applied across an entire, homogeneous, geopolitical region, whereas scientists undertake multiyear research projects to appreciate the complex interactions occurring within heterogeneous catchments. As a result, watershed management is often practiced with science and policy out of synch. Meanwhile, development pressures in suburban watersheds create changes in the social and physical fabric and pose a moving target for science and policy. Recent and anticipated advances in the scientific understanding of urbanized catchment hydrology and pollutant transport suggest that management should become increasingly sensitive to spatial heterogeneities in watershed features, such as soil types, terrain slopes, and seasonal watertable profiles. Toward this end, policy-makers should encourage funding scientific research that characterizes the impacts of these watershed heterogeneities within a geopolitical zoning and development framework.  相似文献   
89.
Abstract: In January 2001, the U.S. Supreme Court ruled that the U.S. Army Corps of Engineers exceeded its statutory authority by asserting Clean Water Act (CWA) jurisdiction over non‐navigable, isolated, intrastate waters based solely on their use by migratory birds. The Supreme Court’s majority opinion addressed broader issues of CWA jurisdiction by implying that the CWA intended some “connection” to navigability and that isolated waters need a “significant nexus” to navigable waters to be jurisdictional. Subsequent to this decision (SWANCC), there have been many lawsuits challenging CWA jurisdiction, many of which are focused on headwater, intermittent, and ephemeral streams. To inform the legal and policy debate surrounding this issue, we present information on the geographic distribution of headwater streams and intermittent and ephemeral streams throughout the U.S., summarize major findings from the scientific literature in considering hydrological connectivity between headwater streams and downstream waters, and relate the scientific information presented to policy issues surrounding the scope of waters protected under the CWA. Headwater streams comprise approximately 53% (2,900,000 km) of the total stream length in the U.S., excluding Alaska, and intermittent and ephemeral streams comprise approximately 59% (3,200,000 km) of the total stream length and approximately 50% (1,460,000 km) of the headwater stream length in the U.S., excluding Alaska. Hillslopes, headwater streams, and downstream waters are best described as individual elements of integrated hydrological systems. Hydrological connectivity allows for the exchange of mass, momentum, energy, and organisms longitudinally, laterally, vertically, and temporally between headwater streams and downstream waters. Via hydrological connectivity, headwater, intermittent and ephemeral streams cumulatively contribute to the functional integrity of downstream waters; hydrologically and ecologically, they are a part of the tributary system. As this debate continues, scientific input from multiple fields will be important for policymaking at the federal, state, and local levels and to inform water resource management regardless of the level at which those decisions are being made. Strengthening the interface between science, policy, and public participation is critical if we are going to achieve effective water resource management.  相似文献   
90.
Abstract: The U.S. Federal Emergency Management Agency (FEMA) flood maps depict the 100‐year recurrence interval floodplain boundary as a single line. However, because of natural variability and model uncertainty, no floodplain extents can be accurately defined by a single line. This article presents a new approach to floodplain mapping that takes advantage of accepted methodologies in hydrologic and hydraulic analysis while including the effects of uncertainty. In this approach, the extents of computed floodplain boundaries are defined as a continuous map of flood probabilities, rather than as a single line. Engineers and planners can use these flood probability maps for viewing the uncertainty of a floodplain boundary at any recurrence interval. Such a flood probability map is a useful tool for visualizing the uncertainty of a floodplain boundary and represents greater honesty in engineering technologies that are used for flood mapping. While institutional barriers may prevent adoption of such definitions for use in graduated flood insurance rates (as most other insurance industries use to account for relative risks), the methods open the door technically to such a reality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号