首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
环保管理   14篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1997年   1篇
  1995年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
The southern interior ecoprovince (SIE) of British Columbia, Canada represents the northernmost extent of the great western North American deserts, it is experiencing some of the nation's fastest economic and population growth making it one of Canada's most water‐stressed regions, and it includes two headwater basins of the transboundary (Canada‐US) Columbia River. Statistical trend analyses were performed on 90‐year regional indicator time series for annual conditions in observed temperature, precipitation, and streamflow reflecting the three major SIE river basins: the Thompson, and transboundary Okanagan and Similkameen. Results suggest that regional climate has grown warmer and wetter, but with little net impact on total water supply availability. The outcome might reflect mutual cancellation of increases in precipitation inputs vs. evapotranspiration losses. Conclusions appeared largely insensitive to low‐pass data filtering, Pacific Decadal Oscillation effects, or solar output variability. Ensemble historical global climate model runs over the same time interval support this absence of appreciable trend in regionally integrated annual runoff volume, but a possible mismatch in precipitation results suggests a direction for further study. Overall, while important changes in hydrologic timing and extremes are likely occurring here, there is limited evidence for a net change in overall water supply availability over the last century.  相似文献   
12.
Abstract: Long‐term flow records for watersheds with minimal human influence have shown trends in recent decades toward increasing streamflow at regional and national scales, especially for low flow quantiles like the annual minimum and annual median flows. Trends for high flow quantiles are less clear, despite recent research showing increased precipitation in the conterminous United States over the last century that has been brought about primarily by an increased frequency and intensity of events in the upper 10th percentile of the daily precipitation distribution – particularly in the Northeast. This study investigates trends in 28 long‐term annual flood series for New England watersheds with dominantly natural streamflow. The flood series are an average of 75 years in length and are continuous through 2006. Twenty‐five series show upward trends via the nonparametric Mann‐Kendall test, 40% (10) of which are statistically significant (p < 0.1). Moreover, an average standardized departures series for 23 of the study gages indicates that increasing flood magnitudes in New England occurred as a step change around 1970. The timing of this is broadly synchronous with a phase change in the low frequency variability of the North Atlantic Oscillation, a prominent upper atmospheric circulation pattern that is known to effect climate variability along the United States east coast. Identifiable hydroclimatic shifts should be considered when the affected flow records are used for flood frequency analyses. Special treatment of the flood series can improve the analyses and provide better estimates of flood magnitudes and frequencies under the prevailing hydroclimatic condition.  相似文献   
13.
ABSTRACT: The Pacific Northwest (PNW) regional assessment is an integrated examination of the consequences of natural climate variability and projected future climate change for the natural and human systems of the region. The assessment currently focuses on four sectors: hydrology/water resources, forests and forestry, aquatic ecosystems, and coastal activities. The assessment begins by identifying and elucidating the natural patterns of climate vanability in the PNW on interannual to decadal timescales. The pathways through which these climate variations are manifested and the resultant impacts on the natural and human systems of the region are investigated. Knowledge of these pathways allows an analysis of the potential impacts of future climate change, as defined by IPCC climate change scenarios. In this paper, we examine the sensitivity, adaptability and vulnerability of hydrology and water resources to climate variability and change. We focus on the Columbia River Basin, which covers approximately 75 percent of the PNW and is the basis for the dominant water resources system of the PNW. The water resources system of the Columbia River is sensitive to climate variability, especially with respect to drought. Management inertia and the lack of a centralized authority coordinating all uses of the resource impede adaptability to drought and optimization of water distribution. Climate change projections suggest exacerbated conditions of conflict between users as a result of low summertime streamfiow conditions. An understanding of the patterns and consequences of regional climate variability is crucial to developing an adequate response to future changes in climate.  相似文献   
14.
ABSTRACT: Periodic surveys of the upper Mississippi River since 1866 and a discharge record of nearly equal length provided an opportunity to learn more about the magnitudes and rates of geomorphic processes at work in large stream systems. Furthermore, geomorphic and hydrologic adjustments could be evaluated in relation to watershed land use changes, small‐scale climate fluctuations, and considerable modifications to the channel and floodplain during the period of record. The present study uses GIS mapping to quantitatively compare historical changes in mapped land and water phenomena in the upper Mississippi River Pool 10, located along southwest Wisconsin's border. Modest channel widening and decreases in island area throughout the study reach during the last century are detectable. Flood magnitudes and frequencies also have varied during this time, and stages and low flow discharges have increased since the 1940s. The latter hydrologic change appears to be closely associated with the reach's geomorphic adjustments. Results are representative of a valley reach where a major tributary contributes a large sand bedload, forming an alluvial fan of considerable size in the floodplain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号