首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1553篇
  免费   132篇
  国内免费   133篇
安全科学   202篇
废物处理   32篇
环保管理   744篇
综合类   285篇
基础理论   271篇
污染及防治   131篇
评价与监测   83篇
社会与环境   37篇
灾害及防治   33篇
  2023年   21篇
  2022年   22篇
  2021年   40篇
  2020年   47篇
  2019年   46篇
  2018年   26篇
  2017年   50篇
  2016年   59篇
  2015年   68篇
  2014年   66篇
  2013年   78篇
  2012年   60篇
  2011年   97篇
  2010年   54篇
  2009年   120篇
  2008年   76篇
  2007年   73篇
  2006年   62篇
  2005年   76篇
  2004年   57篇
  2003年   68篇
  2002年   61篇
  2001年   48篇
  2000年   62篇
  1999年   51篇
  1998年   43篇
  1997年   25篇
  1996年   38篇
  1995年   24篇
  1994年   20篇
  1993年   17篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   14篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有1818条查询结果,搜索用时 31 毫秒
41.
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   
42.
锂离子电池的安全问题越来越受到重视.本文从锂离子电池热安全性特点着手,分析了锂离子电池的着火、爆炸和电解液泄漏等安全事故特点.简单介绍了锂离子电池主要材料的产热特性、相互反应产热特性.讨论了锂离子电池热模型建立的两种途径,即量热仪途径和化学反应途径,通过这些热模型的建立,来指导锂离子电池的安全设计和管理.  相似文献   
43.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
44.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   
45.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   
46.
Emission inventory is one of the required inputs to air quality models. To assist in the urban and regional modeling efforts, United States Environmental Protection Agency (EPA) has compiled a National Emission Inventory (NEI) for criterion pollutants, and the precursors of ozone and particulate matter (PM). In December 2002, EPA released the 1999 NEI estimates (NEI99), which represent the most recent national emission data. However, the data sets are not in model-ready format for air quality simulations. This present work converts the NEI99 Final Version 2 data sets into Inventory Data Analyzer (IDA) format and processes the data using the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system to generate a gridded emission inventory in a domain covering the west Gulf Coast Region, USA. The spatial and diurnal emission characteristics of the gridded emission inventories are then assessed and compared with those of the National Emission Trend 1996 (NET96). The NEI99 database contains more complete emission records in both area and point sources. It is also found that NEI99 data exhibit greater emissions with respect to point and mobile sources but smaller emissions with respect to area sources when compared to the corresponding gridded NET96 data in the same study domain. The most distinct differences between the NEI99 and NET96 databases are CO emission of mobile sources, SO2 emissions of point sources, and VOC/PM/NH3/NOx emissions of area and non-road sources. The gridded NEI99 data show low VOC/NOx ratios (<2-5) in the urban areas of the study domain.  相似文献   
47.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
48.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   
49.
For more than 30 years, multiple research groups have worked on the automation of hazard and operability (HAZOP) studies, or more specifically on the hazard identification process. So far, very few of these approaches have been used in the chemical process industry. Automatic hazard identification is a knowledge-intensive process that demands high standards with regard to the way in which knowledge is stored and made available. There are various suitable approaches to the qualitative modeling of processes and plants, which are the foundation for reasoning systems that are used for the identification of hazards. Additionally, there are quantitative methods that are based on process simulations and can be used to identify potential hazards. The investigation of the state of research demonstrates that there are sophisticated technologies for automated systems that include powerful reasoning techniques. The benefits and shortcomings of existing technologies are discussed with regard to their industrial applicability. Often, the quality of the necessary specific and generic knowledge is not sufficient to detect potential hazardous events and operational malfunctions. Computer-aided HAZOP systems should be integrated with computer-aided design- or process simulation software using common data models based on the digital representation of the process plant. In order to be used by HAZOP practitioners automated systems need to be comprehensive, serve as specialized decision support systems, and be tested and evaluated using round robin tests.  相似文献   
50.
Subsistence hunting presents a conservation challenge by which biodiversity preservation must be balanced with safeguarding of human livelihoods. Globally, subsistence hunting threatens primate populations, including Madagascar's endemic lemurs. We used population viability analysis to assess the sustainability of lemur hunting in Makira Natural Park, Madagascar. We identified trends in seasonal hunting of 11 Makira lemur species from household interview data, estimated local lemur densities in populations adjacent to focal villages via transect surveys, and quantified extinction vulnerability for these populations based on species-specific demographic parameters and empirically derived hunting rates. We compared stage-based Lefkovitch with periodic Leslie matrices to evaluate the impact of regional dispersal on persistence trajectories and explored the consequences of perturbations to the timing of peak hunting relative to the lemur birth pulse, under assumptions of density-dependent reproductive compensation. Lemur hunting peaked during the fruit-abundant wet season (March–June). Estimated local lemur densities were roughly inverse to body size across our study area. Life-history modeling indicated that hunting most severely threatened the species with the largest bodies (i.e., Hapalemur occidentalis, Avahi laniger, Daubentonia madagascariensis, and Indri indi), characterized by late-age reproductive onsets and long interbirth intervals. In model simulations, lemur dispersal within a regional metapopulation buffered extinction threats when a majority of local sites supported growth rates above the replacement level but drove regional extirpations when most local sites were overharvested. Hunt simulations were most detrimental when timed to overlap lemur births (a reality for D. madagascariensis and I. indri). In sum, Makira lemurs were overharvested. Regional extirpations, which may contribute to broad-scale extinctions, will be likely if current hunting rates persist. Cessation of anthropogenic lemur harvest is a conservation priority, and development programs are needed to help communities switch from wildlife consumption to domestic protein alternatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号