首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   33篇
  国内免费   9篇
安全科学   3篇
废物处理   1篇
环保管理   155篇
综合类   16篇
基础理论   7篇
污染及防治   2篇
评价与监测   6篇
社会与环境   3篇
灾害及防治   2篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   14篇
  2015年   4篇
  2014年   10篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
101.
为了揭示不同流域滨岸带的生态功能,于2015年夏季采集太湖西部苕溪流域和天目湖流域不同滨岸带(林地、耕地、草地、荒地)土壤,利用连续顺序提取法获得无机磷形态,分析土壤磷形态的空间分布特征、影响因素以及土壤磷形态与地下水中TDP(总溶解性磷)的联系.结果表明:苕溪滨岸带的磷形态含量总体上高于天目湖滨岸带,但组成方面有所差异.滨岸带土壤的NH4Cl-P(弱吸附态磷)、BD-P(还原态磷)、NaOH-P(金属氧化物结合态磷)含量随土壤深度的增加而降低,HCl-P(钙结合态磷)含量随土壤深度的增加而增加,耕地表现得最为明显.从高地到滨水带,草地和荒地的磷形态含量有略微增加的趋势,而林地和耕地的磷形态含量均降低,耕地同样表现得最为明显.苕溪滨岸带磷形态含量的水平变幅大于天目湖滨岸带.相关性分析表明,土壤NaOH-P对地下水中TDP的贡献较大,有机质、黏土矿物和碳酸盐对磷形态有明显的影响;苕溪滨岸带土壤性质对其磷形态的影响较弱,而天目湖滨岸带比较明显.因此,苕溪和天目湖流域不同滨岸带土壤磷形态的空间分布存在差异,影响因素也不同;土壤磷形态与地下水中TDP有明显关系,尤其是NaOH-P.   相似文献   
102.
采用恒电流模式,同时以活性炭纤维(ACF)为阳极和阴极,在无隔膜电解槽中研究了不同电流密度下偶氮染料苋菜红的电化学脱色。结果表明在0.6~1.5 mA/cm2时,电解槽中发生阳极电氧化和阴极电还原同时进行的成对电解脱色。成对电解的发生,可以提高电解槽的工作处理能力。当电流密度为0.9 mA/cm2时,脱色率达到95.5%。  相似文献   
103.
Abstract: The calibration of basin‐scale hydrologic models consists of adjusting parameters such that simulated values closely match observed values. However, due to inevitable inaccuracies in models and model inputs, simulated response hydrographs for multiyear calibrations will not be perfectly synchronized with observed response hydrographs at the daily time step. An analytically derived formula suggests that when timing errors are significant, traditional calibration approaches may generally underestimate the total event‐flow volume. An event‐adaptive time series is developed and incorporated into the Nash‐Sutcliffe Efficiency objective function to diagnose the potential impact of event‐flow synchronization errors. Test sites are the 50 km2 Subwatershed I of the Little River Experimental Watershed (LREWswI) in southeastern Georgia, and the 610 km2 Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma, with the Soil and Water Assessment Tool used as the hydrologic model. Results suggest that simulated surface runoff generation is 55% less for LREWswI when the daily time series is used compared with when the event‐adaptive technique is used. Event‐flow generation may also be underestimated for LWREW, but to a lesser extent than it may be for LREWswI, due to a larger portion of the event flow being lateral flow.  相似文献   
104.
分别以活性炭纤维(ACF)为阳极和阴极,在无隔膜电解槽中研究了利用成对电解降解蒽醌染料活性艳蓝KN-R脱色过程的影响因素。考察了染料初始浓度、支持电解质Na2SO4、pH及温度诸条件对脱色性能的作用。结果表明:适当增加染料初始浓度和支持电解质浓度,酸性和中性条件以及适中的温度均对成对电解脱色性能有利。当染料初始浓度为251mg/L,在合适的处理条件下,脱色率达到95%,脱除单位质量染料电耗仅为1.22kWh/kg染料。  相似文献   
105.
Excess loading of nitrogen and phosphorus to river networks causes environmental harm, but reducing loads from large river basins is difficult and expensive. We developed a new tool, the River Basin Export Reduction Optimization Support Tool (RBEROST) to identify the least-cost combinations of management practices that will reduce nutrient loading to target levels in downstream and mid-network waterbodies. We demonstrate the utility of the tool in a case study in the Upper Connecticut River Basin in New England, USA. The total project cost of optimized lowest-cost plans ranged from $18.0 million to $41.0 million per year over 15 years depending on user specifications. Plans include both point source and non-point source management practices, and most costs are associated with urban stormwater practices. Adding a 2% margin of safety to loading targets improved the estimated probability of success from 37.5% to 99%. The large spatial scale of RBEROST, and the consideration of both point and non-point source contributions of nutrients, make it well suited as an initial screening tool in watershed planning.  相似文献   
106.
ABSTRACT: We examined hydrogeochemical records for a dozen watersheds in and near Kejimkujik National Park in southwestern Nova Scotia by relating stream ion concentrations and fluxes to atmospheric deposition, stream type (lake inlet versus outlet; brown versus clear water), and watershed type (catchment area, topography, soils, and dominant forest cover type). We found that fog and dry deposition make important contributions to S, N, Cl, H, Ca, Mg, K, and Na inputs into these watersheds. Seasalt chloride deposition from rain, snow, fog, and dry deposition equal total stream outputs on a region‐wide basis. Chloride outputs, however, differ among watersheds by a factor of about two, likely due to local differences in air flow and vegetational fog interception. We found that most of the incoming N is absorbed by the vegetation, as stream water NO3 and NH4+ are very low. Our results also show that the vegetation and the soils absorb about half of the incoming SO42. In comparison with other North American watersheds with similar forest vegetation, Ca outputs are low, while Mg and K outputs are similar to other regions. Soil exchangeable Ca and soil cation exchange capacity are also very low. We found that first‐order forest streams with no upstream lakes have a distinct seasonal pattern that neither corresponds with the seasonal pattern of atmospheric deposition, nor with the seasonal pattern of downstream lake outlets.  相似文献   
107.
Annual expenditures by the federal government in the United States for agricultural conservation programs increased about 80 percent with passage of the 2002 Farm Bill. However, environmental benefits of these programs have not been quantified. A national project is under way to estimate the effect of conservation practices on environmental resources. The watershed models intended for use in that project are focused on water quantity and quality and have minimal habitat assessment capability. Major impairments to aquatic ecosystems in many watersheds consist of physical habitat degradation, not water quality, suggesting that current models for this national initiative do not address one of the most significant aspects of aquatic ecosystem degradation. Currently used models contain some components relevant to aquatic habitat, and this paper describes specific components that should be added to allow rudimentary stream habitat quality assessments. At least six types of variables could be examined for ecological impact: land use, streamflow, water temperature, streambed material type, large woody debris, and hydraulic conditions at base flow. All of these variables are influenced by the presence, location, and quality of buffers. Generation of stream corridor ecological or habitat quality indices might contribute to assessments of the success or failure of conservation programs. Additional research is needed to refine procedures for combining specific measures of stream habitat into ecologically meaningful indices.  相似文献   
108.
Watson, Tara K., Dorothy Q. Kellogg, Kelly Addy, Arthur J. Gold, Mark H. Stolt, Sean W. Donohue, and Peter M. Groffman, 2010. Groundwater Denitrification Capacity of Riparian Zones in Suburban and Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):237-245. DOI: 10.1111/j.1752-1688.2010.00418.x Abstract: We evaluated the relationship of dominant watershed land use to the structure and nitrogen (N) sink function of riparian zones. We focused on groundwater denitrification capacity, water table dynamics, and the presence and pattern of organically enriched deposits. We used the push-pull method (measurement of 15N-enriched denitrification gases derived from an introduced groundwater plume of 15N-enriched nitrate) to evaluate groundwater denitrification capacity on nine forested wetland riparian sites developed in alluvial or outwash parent materials in southern New England. Three replicate sites were located in each of the three watershed types, those with substantial (1) irrigated agriculture, (2) suburban development, and (3) forest. Soil morphology and water table dynamics were assessed at each site. We found significantly lower mean annual water tables at sites within watersheds with substantial irrigated agriculture or suburban development than forested watersheds. Water table dynamics were more variable at sites within suburban watersheds, especially during the summer. Groundwater denitrification capacity was significantly greater at sites within forested watersheds than in watersheds with substantial irrigated agriculture. Because of the high degree of variability observed in riparian sites within suburban watersheds, groundwater denitrification capacity was not significantly different from either forested or agricultural watersheds. The highly variable patterns of organically enriched deposits and water tables at sites within suburban watersheds suggests that depositional events are irregular, limiting the predictability of groundwater N dynamics in these riparian zones. The variability of riparian N removal in watersheds with extensive suburbia or irrigated agriculture argues for N management strategies emphasizing effective N source controls in these settings.  相似文献   
109.
In all, 13 stream water-quality parameters, including specific conductance (SC), pH, dissolved oxygen (DO), dissolved organic carbon (DOC), three nutrients, and six major ions were compared between the northern bedrock and southern coastal plain regions of New Jersey, USA and related to watershed-disturbance gradients characterized by the percentage of urban land, impervious surface (IS), agriculture, and altered land (sum of urban land and agriculture) in the watersheds. SC, DO, calcium, magnesium, sodium, and chloride concentrations were greater in the north. DOC was higher and pH was lower in the south. Nutrient, potassium, and sulfate concentrations did not differ between regions. Regional water-quality differences are attributed to geologic setting and land use. Except for DO in southern streams, all water-quality parameters were related to urban land, agriculture, or both. Significant correlations between urban land and IS and water-quality variables were similar in both regions with differences in unitless correlation coefficients ranging from 0.00 to 0.06. Compared to urban land and agriculture, relationships between most water-quality variables and altered land were stronger in the south. The extent of urban and agricultural lands in the watersheds did not differ by region. Altered land was correlated with urban land in both regions and with agriculture only in the south. Although focused on New Jersey, this study has broader implications for watershed planning.  相似文献   
110.
Rebich, Richard A., Natalie A. Houston, Scott V. Mize, Daniel K. Pearson, Patricia B. Ging, and C. Evan Hornig, 2011. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico From Streams in the South‐Central United States. Journal of the American Water Resources Association (JAWRA) 47(5):1061‐1086. DOI: 10.1111/j.1752‐1688.2011.00583.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South‐Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas‐White‐Red, and Texas‐Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two‐thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号