首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   10篇
  国内免费   1篇
安全科学   9篇
废物处理   1篇
环保管理   157篇
综合类   19篇
基础理论   7篇
污染及防治   2篇
评价与监测   6篇
社会与环境   4篇
灾害及防治   2篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   14篇
  2015年   4篇
  2014年   10篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   3篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
21.
    
ABSTRACT: The use of watersheds to conduct research on land/water relationships has expanded recently to include both extrapolation and reporting of water resource information and ecosystem management. More often than not, hydrologic units (HUs) are used for these purposes, with the implication that hydrologic units are synonymous with watersheds. Whereas true topographic watersheds are areas within which apparent surface water drains to a particular point, generally only 45 percent of all hydrologic units, regardless of their hierarchical level, meet this definition. Because the area contributing to the downstream point in many hydrologic units extends far beyond the unit boundaries, use of the hydrologic unit framework to show regional and national patterns of water quality and other environmental resources can result in incorrect and misleading illustrations. In this paper, the implications of this misuse are demonstrated using four adjacent HUs in central Texas. A more effective way of showing regional patterns in environmental resources is by using data from true watersheds representative of different ecological regions containing particular mosaics of geographical characteristics affecting differences in ecosystems and water quality.  相似文献   
22.
    
Sedimentation rates and sediment provenance were examined for lacustrine sediments deposited in Fairfield Lake, western North Carolina, during the past 111 years. Stratigraphic, radionuclide, and cartographic data indicate that sedimentation rates have increased several fold during the past three decades in response to localized development. The magnitude of increased sedimentation was surprising given limited development within the basin: 0.12 to 0.68 buildings/ha in 2000 in those parts directly delivering sediment to the dated cores. Thus, the analysis illustrates the potential sensitivity of watersheds in the southern Appalachians to changes in land cover. An approach that combined geochemical fingerprinting with sediment mixing models was subsequently evaluated to determine its ability to accurately estimate the contribution of sediment from (1) major bedrock formations that underlie the watershed and (2) potential sources associated with four land cover categories. Sediment sources in both analyses proved difficult to geochemically fingerprint to greater than 90 percent accuracy using data on acid‐soluble metals and selected isotopes of lead (Pb). The relative contributions of sediment from delineated sources, estimated by the mixing models, generally corresponded with known temporal and spatial patterns of land cover. However, the models were plagued by two significant problems — the chemical alteration of sediments as they were transported through upland streams to depositional sites within the lake and the loss of elemental mass. Thus, future investigations using the fingerprinting approach in this area of intense weathering, and presumably others, will need to modify the existing methods to more accurately elucidate changes in sediment provenance related to development.  相似文献   
23.
    
Urban stormwater practices are individually diverse, but they are components of an overall urban watershed system. This study proposes a conceptual model of that system, including its component spatial areas, their arrangement along the flow route, and their associations with urban land uses and values. The model defines three spatial areas along the flow route which have evolved over time into their present forms: (1) the source area, which is arranged and furnished primarily or entirely for human use, accommodation, and comfort; (2) the perimeter area, where specialized stormwater facilities carry away source‐area runoff or buffer downstream areas from its impacts; and (3) the downstream area, which receives the discharges from the perimeter or directly from the source area. Each area presents a specific combination of stormwater features and human interactions, and excludes others. Considering stormwater flows and functions in the context of physical urban spaces brings into view the spaces’ urban structures and interacting agendas. This model allows practitioners to navigate conceptually through the system, and to focus appropriate objectives and structures on each project site.  相似文献   
24.
    
ABSTRACT: Results from studies in the Illinois-Indiana and Texas-Oklahoma areas indicate that satellite microwave observations at the 1.55 cm wavelength are responsive to relative moisture variations in the near surface layer of the soil. Because significant vegetation cover absorbs the 1.55 cm microwave emission from the soil, the target area must be predominately bare soil or low density vegetation cover for meaningful measurements to result. The 25 km resolution of the satellite sensor limits application of the microwave techniques to large areas such as watersheds or agricultural districts rather than individual fields. In general, at 1.55 cm. there is an inverse relationship between microwave brightness temperature and changes in soil moisture levels (as indicated by antecedent rainfall) in agricultural regions before the planting of crops or during the early growing season when vegetation cover is sparse. Even early season observations should be of great value in deciding on the time and type of crop planting and for initial irrigation scheduling when the root zone is still in close proximity to the surface.  相似文献   
25.
    
ABSTRACT: Data from 85 sites across the United States were used to estimate concentrations and yields of selected nutrients in streams draining relatively undeveloped basins. Flow‐weighted concentrations during 1990–1995 were generally low with median basin concentrations of 0.020, 0.087, 0.26, 0.010, and 0.022 milligrams per liter (mg/L) for ammonia as N, nitrate as N, total nitrogen, orthophosphate as P, and total phosphorus, respectively. The flow‐weighted concentration of nitrate exceeded 0.6 mg/L in only three basins. Total nitrogen exceeded 1 mg/L in only four basins, and total phosphorus exceeded 0.1 mg/L in only four basins. The median annual basin yield of ammonia as N, nitrate as N, total nitrogen, orthophosphate as P, and total phosphorus was 8.1, 26, 86, 2.8, and 8.5 kilograms per square kilometer, respectively. Concentrations and yields of nitrate tended to be highest in northeastern and mid‐Atlantic coastal states and correlated well with areas of high atmospheric nitrogen deposition. Concentrations and yields of total nitrogen were highest in the southeastern part of the nation and in parts of the upper Midwest. In the northeast, nitrate was generally the predominant form of nitrogen, and in the southeast and parts of the upper Midwest, organic nitrogen was the dominant form. Concentrations of total phosphorus were generally highest in the Rocky Mountain and Central Plain states.  相似文献   
26.
    
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   
27.
28.
Preston, Stephen D., Richard B. Alexander, Gregory E. Schwarz, and Charles G. Crawford, 2011. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States. Journal of the American Water Resources Association (JAWRA) 47(5):891‐915. DOI: 10.1111/j.1752‐1688.2011.00577.x Abstract: We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long‐term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales.  相似文献   
29.
    
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships.  相似文献   
30.
The flood frequency characteristics of 18 watersheds in southeastern Arizona were studied using the log-Boughton and the log-Pearson Type 3 distribution. From the flood frequency study, a generalized envelope for Q100 for watersheds 0.01 to 4000 mi2 in area has been produced for southeastern Arizona. The generalized envelope allows comparisons to be made among the relative flood characteristics of the watersheds used in the study and provides a conservative estimate of Q100 for ungaged watersheds in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号