首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   33篇
  国内免费   9篇
安全科学   3篇
废物处理   1篇
环保管理   155篇
综合类   16篇
基础理论   7篇
污染及防治   2篇
评价与监测   6篇
社会与环境   3篇
灾害及防治   2篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   14篇
  2015年   4篇
  2014年   10篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
51.
ABSTRACT: A significant portion of all pollutants entering surface waters (streams, lakes, estuaries, and wetlands) derives from non-point source (NPS) pollution and, in particular, agricultural activities. The first step in restoring a water resource is to focus on the primary water quality problem in the watershed. The most appropriate NPS control measures, which include best management practices (BMPs) and landscape features, such as wetlands and riparian areas, can then be selected and positioned to minimize or mitigate the identified pollutant(s). A computer-based decision sup. port and educational software system, WATERSHEDSS (WATER, Soil, and Hydro-Environmental Decision Support System), has been developed to aid managers in defining their water quality problems and selecting appropriate NPS control measures. The three primary objectives of WATERSHEDSS are (1) to transfer water quality and land treatment information to watershed managers in order to assist them with appropriate land management/land treatment decisions; (2) to assess NPS pollution in a watershed based on user-supplied information and decisions; and (3) to evaluate, through geographical information systems-assisted modeling, the water quality effects of alternative land treatment scenarios. WATERSHEDSS is available on the World Wide Web (Web) at http://h2osparc.wq.ncsu.edu .  相似文献   
52.
ABSTRACT: Few studies have addressed the natural pollution potential of pristine subalpine forested watersheds on a site-specific basis. Consequently, specific source and amounts of nutrient discharge to tributaries of the Tahoe Basin are difficult to identify. The sediment content and nitrate and ammonium levels in surface runoff from two soil types (Meeks and Umpa), four plot conditions (wooded natural and disturbed, open natural and disturbed), and three slopes (gentle, moderate, and steep) were studied using rainfall simulation that applied a 9 cm h1, 1-h event. A significant (P ≤ 0.005) two-way interaction between soil type and plot condition affected runoff nitrate concentration. Runoff from natural or disturbed open plots contained significantly (P = 0.05) greater nitrate than wooded plots. Peak concentrations of nitrate commonly occurred during early runoff, suggesting that peak nitrate discharge to Lake Tahoe tributaries can be expected during early runoff from snowmelt and summer precipitation events. The highest nitrate runoff concentration and 1-h cumulative loading from the 0.46 m2 plots were 6.7 mg L-1 (Umpa, open natural, 15–30 percent slope), and 0.7 mg (Umpa, open natural, ≥ 30 percent slope), respectively. Ammonium in surface runoff was generally below detection limits (≤ 0.05 μg L?1). No statistical relationship between runoff nitrate and sediment discharge was detected.  相似文献   
53.
The Ala Wai Canal Watershed Model (ALAWAT) is a planning-level watershed model for approximating direct runoff, streamflow, sediment loads, and loads for up to five pollutants. ALAWAT uses raster GIS data layers including land use, SCS soil hydrologic groups, annual rainfall, and subwatershed delineations as direct model parameter inputs and can use daily total rainfall from up to ten rain gauges and streamflow from up to ten stream gauges. ALAWAT uses a daily time step and can simulate flows for up to ten-year periods and for up to 50 subwatersheds. Pollutant loads are approximated using a user-defined combination of rating curve relationships, mean event concentrations, and loading/washoff parameters for specific subwatersheds, land uses, and times of year. Using ALAWAT, annual average streamflow and baseflow relationships and urban suspended sediment loads were approximated for the Ala Wai Canal watershed (about 10,400 acres) on the island of Oahu, Hawaii. Annual average urban suspended sediments were approximated using two methods: mean event concentrations and pollutant loading and washoff. Parameters for the pollutant loading and washoff method were then modified to simulate the effect of various street sweeping intervals on sediment loads.  相似文献   
54.
ABSTRACT: Streamside red alder (Alnus rubra Bong.) stands are common in western Oregon, and they have been suspected of causing water quality problems in domestic supplies during autumn leaf fall. Studies in the Seaside municipal watershed showed potential water quality effects (particularly increased color) from alder leaves, but stream sampling during 1981–82 revealed no chronic problems. The few observed short-term increases in water color occurred near the onset of storm flows, which suggested a flushing of organic matter storage sites. An extended period of unusually low flows and high leaf fall are probably necessary to produce significant water quality problems in this stream system. Laboratory leaching of alder leaves in filtered stream water indicated a fairly constant release of colored organic matter over time, and running water leached this matter more efficiently than still water. Water color increased linearly with increasing leaf mass added to still water, and for a given leaf mass there appeared to be a limit to the amount of colored matter that could be removed in the first 48 hours of leaching. Other laboratory tests showed that ultraviolet absorbance (254 mm) may provide a reasonable estimate of dissolved organic carbon concentrations in systems dominated by alder leaf inputs.  相似文献   
55.
ABSTRACT: Resource utilization as practiced by humans is identified as the main cause of the degradation of rangeland watersheds, a process referred to as desertification. This paper introduces a multi-objective decision making methodology for the selection of a plan which if implemented should limit the desertification process. The evaluation objectives are measured by quantitative and qualitative criteria. The quantitative criteria provide the performance level for production and sediment yield, while the qualitative criteria give such information as public acceptance of a particular alternative or worth of an appropriate wildlife habitat. A system model is applied to describe the dynamics of a range site in response to climatic and human inputs. As such it provides the information required by the quantitative criteria as well as a range condition index that identifies the productivity of a given range site. A multiobjective selection procedure is presented that will lead to the appropriate technique from an available set, in this case ESAP, Environmental Sensitivity Analysis Package. Four individuals with diverse backgrounds in natural resource management participated as decision makers and decided on their preferred alternatives. Finally, ranked alternatives in agreement with all of the decision makers were obtained.  相似文献   
56.
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration.  相似文献   
57.
Data limitations often challenge the reliability of water quality models, especially in intensively managed watersheds. While numerous studies report successful hydrological model setup and calibration, few have addressed in detail the data challenges for multisite and multivariable model calibration to an intensively managed watershed. In this study, we address some of these challenges based on our reflective experience calibrating the Soil and Water Assessment Tool (SWAT) to the Upper Sangamon River Watershed in central Illinois based on daily flow, annual crop yield, and monthly sediment, nitrate, and total phosphorus loads. We highlight some challenges in SWAT calibration processes due to data errors and inconsistencies, and insufficient precipitation and water quality observations. Following, we demonstrate the merits of additional weather and water quality observations that could help reduce input uncertainties, and we provide suggestions for selecting appropriate observations for the model calibration. After dealing with the data issues, we show that the SWAT model could be calibrated with acceptable results for the case study watershed.  相似文献   
58.
Abstract: Autumn‐olive (Elaeagnus umbellata Thunb.) is an invasive, exotic shrub that has become naturalized in the eastern United States. Autumn‐olive fixes nitrogen (N) via a symbiotic relationship with the actinomycete Frankia. At the plot scale, the presence of autumn‐olive has been related to elevated soil water nitrate‐N (NO3?‐N) concentrations. This study examined the relationship between autumn‐olive cover in a watershed and stream water quality. Stream water nitrate‐N (NO3?‐N) and ammonium‐N (NH4+‐N) concentrations were measured in 12 first order ephemeral streams draining watersheds with mixed forest cover and a range of 0‐35% autumn‐olive cover. Percent autumn‐olive cover was positively correlated with mean stream NO3?‐N concentrations, but was not correlated with mean stream NH4+‐N concentrations. While other studies have demonstrated a significant relationship between native N‐fixers and stream NO3?‐N, this is the first study to document a relationship for an invasive, exotic N‐fixing species. Results suggest that this exotic species can be an additional source of NO3? in local and regional water bodies and demonstrates an additional negative ecosystem consequence of invasion beyond losses in biodiversity.  相似文献   
59.
Abstract: Information on evapotranspiration (ET) can help us understand water balance, particularly in forested watersheds. Previous studies in China show that ET was relatively low (30‐40% of total precipitation) in the Minjiang Valley located in the upper reach of the Yangtze River Basin. However, this conclusion was derived from research on small‐scale watersheds (<100 km2). The objective of this paper was to present ET information on meso‐scale watersheds in the Minjiang Valley. Four meso‐scale watersheds (1,700‐5,600 km2) located in the Minjiang Valley were used to estimate ET using the water balance approach. We first generated forest vegetation variables (coniferous forest percentage, forest cover percentage, and derived forest vegetation index) using remote sensing data. Landsat 5 TM satellite images, acquired on June 26, 1994, were selected for the vegetation classification. Actual annual ET was calculated based on 11‐year estimated precipitation and measured streamflow data (1992‐2002). We also calculated potential ET (PET) using an improved Thornthwaite model for all four watersheds for the period of 1992‐1998. PET can provide additional information about potential capacity of water flux to atmosphere in the region. Seasonal (dry and rainy) PET and ET for all studied watersheds were also estimated for comparison purposes as the water balance approach, at shorter than annual scales, would likely provide inaccurate estimates of ET. The dominant vegetations in the Minjiang Valley were grasslands, conifer forests, and shrub‐lands. Our results confirmed that both ET and PET for three studied meso‐scale watersheds in the Minjiang Valley is relatively low (39.5‐43.8 and 28.2‐47.7% for ET and PET, respectively), with an exception of ET in the Yuzixi watershed being 71.1%. This result is generally consistent with previous research at small watershed scales. Furthermore, the low ET across various scales in the Minjiang Valley may be related to the unique deeply cut valley environment.  相似文献   
60.
Abstract: Land use in a watershed is commonly held to exert a strong influence on trunk channel form and process. Land use changes act over human time‐scales, which are short enough to measure effects on channels directly using historic aerial photographs. We show that high‐resolution topographic surveys for the channels of paired watersheds in the Lehigh Valley, Pennsylvania, are comparable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in most aspects except in their respective amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony Creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data, in concert with other recent hydrologic data from the watersheds suggest that the increase in urban area‐generated peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river esthetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号