首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   91篇
  国内免费   43篇
安全科学   42篇
废物处理   9篇
环保管理   732篇
综合类   109篇
基础理论   104篇
污染及防治   11篇
评价与监测   25篇
社会与环境   30篇
灾害及防治   7篇
  2023年   21篇
  2021年   11篇
  2020年   7篇
  2019年   19篇
  2018年   18篇
  2017年   37篇
  2016年   23篇
  2015年   28篇
  2014年   22篇
  2013年   30篇
  2012年   31篇
  2011年   31篇
  2010年   32篇
  2009年   29篇
  2008年   38篇
  2007年   61篇
  2006年   33篇
  2005年   33篇
  2004年   48篇
  2003年   39篇
  2002年   36篇
  2001年   36篇
  2000年   34篇
  1999年   36篇
  1998年   44篇
  1997年   26篇
  1996年   43篇
  1995年   19篇
  1994年   20篇
  1993年   17篇
  1992年   15篇
  1991年   16篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   14篇
  1985年   8篇
  1983年   5篇
  1982年   12篇
  1981年   6篇
  1980年   15篇
  1979年   6篇
  1978年   7篇
  1977年   2篇
  1976年   4篇
  1975年   8篇
  1974年   2篇
  1973年   5篇
  1972年   6篇
  1971年   8篇
排序方式: 共有1069条查询结果,搜索用时 125 毫秒
461.
Abstract: Bioclimatic envelope models of species’ responses to climate change are used to predict how species will respond to increasing temperatures. These models are frequently based on the assumption that the northern and southern boundaries of a species’ range define its thermal niche. However, this assumption may be violated if populations are adapted to local temperature regimes and have evolved population‐specific thermal optima. Considering the prevalence of local adaptation, the assumption of a species‐wide thermal optimum may be violated for many species. We used spatially and temporally extensive demographic data for American ginseng (Panax quinquefolius L.) to examine range‐wide variation in response of population growth rate (λ) to climatic factors. Our results suggest adaptation to local temperature, but not precipitation. For each population, λ was maximized when annual temperatures were similar to site‐specific, long‐term mean temperatures. Populations from disparate climatic zones responded differently to temperature variation, and there was a linear relation between population‐level thermal optima and the 30‐year mean temperature at each site. For species that are locally adapted to temperature, bioclimatic envelope models may underestimate the extent to which increasing temperatures will decrease population growth rate. Because any directional change from long‐term mean temperatures will decrease population growth rates, all populations throughout a species’ range will be adversely affected by temperature increase, not just populations at southern and low‐elevation boundaries. Additionally, when a species’ local thermal niche is narrower than its range‐wide thermal niche, a smaller temperature increase than would be predicted by bioclimatic envelope approaches may be sufficient to decrease population growth.  相似文献   
462.
Galloway, Gerald E., 2011. If Stationarity Is Dead, What Do We Do Now? Journal of the American Water Resources Association (JAWRA) 47(3):563‐570. DOI: 10.1111/j.1752‐1688.2011.00550.x Abstract: In January 2010, hydrologists, climatologists, engineers, and scientists met in Boulder, Colorado, to discuss the report of the death of hydrologic stationarity and the implications this might have on water resources planning and operations in the United States and abroad. For decades planners have relied on design guidance from the Interagency Advisory Committee on Water Data Bulletin 17B that was based upon the concept of stationarity. After 2½ days of discussion it became clear that the assembled community had yet to reach an agreement on whether or not to replace the assumption of stationarity with an assumption of nonstationarity or something else. Hydrologists were skeptical that data gathered to this point in the 21st Century point to any significant change in river parameters. Climatologists, on the other hand, point to climate change and the predicted shift away from current conditions to a more turbulent flood and drought filled future. Both groups are challenged to provide immediate guidance to those individuals in and outside the water community who today must commit funds and efforts on projects that will require the best estimates of future conditions. The workshop surfaced many approaches to dealing with these challenges. While there is good reason to support additional study of the death of stationarity, its implications, and new approaches, there is also a great need to provide those in the field the information they require now to plan, design, and operate today’s projects.  相似文献   
463.
464.
ABSTRACT: Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land‐surface form, geology, and climate. The basic land‐surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground‐water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land‐surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake‐research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic‐land‐scapes concept to evaluate the effect of ground water on the degree of mineralization and major‐ion chemistry of lakes that lie within ground‐water flow systems.  相似文献   
465.
王秀兰 《四川环境》2001,20(1):75-75
根据测定BOD5所须具备条件,经过理论推导,得出水样稀释倍数的大致范围,对多种工业废水测试证,表明方法简便易行。  相似文献   
466.
ABSTRACT: Throughout western North America, willows and cottonwoods are dominant woody plants in riparian zones, streamside areas that are periodically flooded. This study compared tolerances of willows‐Salix discolor, S. exigua, and S. lutea‐and cottonwoods‐Populus angustifolia, P balsamifera, and P deltoides‐to water inundation, one component of stream flooding. Rooted cuttings were grown for 152 days in 10 cm tall pots in water depths from 2.5 to 10 cm (inundated). Shoot and root elongation growth of the inundated cottonwoods were reduced 23 and 45 percent, while S. lutea was relatively unaffected and the inundated sandbar willow, S. exigua, displayed 72 and 43 percent increases in shoot and root elongation. The inundation reduced transpiration in P deltoides and for mature P balsamifera trees that were flooded by a small reservoir on Willow Creek, Alberta. Those flooded trees died in their second year of inundation. The greater inundation tolerance of willows versus cottonwoods is consistent with observations along Midvale Creek, Montana, where beaver dams created a pond in which P trichocarpa died while willows thrived after five years. These patterns of inundation tolerance are consistent with elevational zones of occurrence as willows‐and particularly the sandbar willow—occur at low elevations close to the stream. The understanding of inundation tolerances should assist in the provision of hydrologic patterns that will conserve and restore these shrubs and trees along streams and could permit their establishment along artificial reservoirs.  相似文献   
467.
ABSTRACT: In recent years, several approaches to hydrologic frequency analysis have been proposed that enable one to direct attention to that portion of an overall probability distribution that is of greatest interest. The majority of the studies have focused on the upper tail of a distribution for flood analyses, though the same ideas can be applied to low flows. This paper presents an evaluation of the performances of five different estimation methods that place an emphasis on fitting the lower tail of the lognormal distribution for estimation of the ten‐year low‐flow quantile. The methods compared include distributional truncation, MLE treatment of censored data, partial probability weighted moments, LL‐moments, and expected moments. It is concluded that while there are some differences among the alternative methods in terms of their biases and root mean square errors, no one method consistently performs better than the others, particularly with recognition that the underlying population distribution is unknown. Therefore, it seems perfectly legitimate to make a selection of a method on the basis other criteria, such as ease of use. It is also shown in this paper that the five alternative methods can perform about as well as, if not better than, an estimation strategy involving fitting the complete lognormal distribution using L‐moments.  相似文献   
468.
The results of comprehensive morphophysiological and population studies on Ajuga reptansL., a species of the nemoral floristic complex, at the northern boundary of its range (in the middle taiga subzone of the Komi Republic) are reviewed. Adaptations at the cell, organism, and biocenotic levels are revealed. The maintenance and survival of the species at the boundary of its range are provided for by its physiological plasticity, resistance to low temperatures, and multiple variants of ontogeny. Prognosis of Ajuga reptansfuture status under conditions of global climate change and expansion of anthropogenically disturbed areas is favorable.  相似文献   
469.
Abstract: The level of endemism at a site may indicate species richness of the site. Nevertheless, assessing endemism levels in taxonomic groups such as plants may be difficult because the species richness of plants is high relative to species richness of other taxonomic groups (e.g., vertebrates). A major problem in determining whether plant species are endemic is the lack of standardization of the geographic extent of endemism: species are considered endemic to, for example, countries, continents, or states. We compiled a history of the concept of endemism as it applies to plants. The application of the concept to geographic distribution dates from the 19th century, when European explorers discovered many taxa exclusive to regions outside Europe. Two types of endemism, paleoendemism and neoendemism, were then acknowledged, according to evolutionary age, and these categories are still in use. In the 20th century, most of the research on endemism focused on explaining range restriction on the basis of cytological data, edaphic and geological factors, and phylogeny. This research led to a vast number of concepts, of which only edaphic endemism remains relatively well accepted. More recently, researchers suggest that competition may determine endemism in some cases. We suggest that plants be labeled as endemic only if their distribution occurs in a distinct ecological unit, such as a biome. On the basis of a literature review of the factors that cause range restriction, we categorized endemic taxa as paleoendemic, neoendemic, edaphically endemic, or suppressed endemic. For example, Schlechtendalia luzulifolia, is a rare forb that is a paleoendemic species of the granite and sandstone‐based grasslands of the Pampa. Levels of endemism in southern Brazilian grasslands are poorly known. We emphasize the importance of recognizing these grasslands as a single transnational biome so that levels of endemism of species therein can be assessed correctly.  相似文献   
470.
Abstract: Predicting whether the ranges of tropical species will shift to higher elevations in response to climate change requires models that incorporate data on topography and land use. We incorporated temperature gradients and land‐cover data from the current ranges of species in a model of range shifts in response to climate change. We tested four possible scenarios of amphibian movement on a tropical mountain: movement upslope through and to land cover suitable for the species; movement upslope to land‐cover types that will not sustain survival and reproduction; movement upslope to areas that previously were outside the species’ range; and movement upslope to cooler areas within the current range. Areas in the final scenario will become isolated as climate continues to change. In our scenarios more than 30% of the range of 21 of 46 amphibian species in the tropical Sierra Nevada de Santa Marta is likely to become isolated as climate changes. More than 30% of the range of 13 amphibian species would shift to areas that currently are unlikely to sustain survival and reproduction. Combined, over 70% of the current range of seven species would become thermally isolated or shift to areas that currently are unlikely to support survival and reproduction. The constraints on species’ movements to higher elevations in response to climate change can increase considerably the number of species threatened by climate change in tropical mountains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号