首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   937篇
  免费   90篇
  国内免费   45篇
安全科学   42篇
废物处理   9篇
环保管理   732篇
综合类   110篇
基础理论   104篇
污染及防治   13篇
评价与监测   25篇
社会与环境   30篇
灾害及防治   7篇
  2023年   21篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   19篇
  2018年   18篇
  2017年   37篇
  2016年   24篇
  2015年   28篇
  2014年   22篇
  2013年   30篇
  2012年   31篇
  2011年   31篇
  2010年   32篇
  2009年   29篇
  2008年   38篇
  2007年   61篇
  2006年   33篇
  2005年   33篇
  2004年   48篇
  2003年   39篇
  2002年   36篇
  2001年   36篇
  2000年   34篇
  1999年   36篇
  1998年   44篇
  1997年   26篇
  1996年   43篇
  1995年   19篇
  1994年   20篇
  1993年   17篇
  1992年   15篇
  1991年   16篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   14篇
  1985年   8篇
  1983年   5篇
  1982年   12篇
  1981年   6篇
  1980年   15篇
  1979年   6篇
  1978年   7篇
  1976年   4篇
  1975年   8篇
  1974年   2篇
  1973年   5篇
  1972年   6篇
  1971年   8篇
排序方式: 共有1072条查询结果,搜索用时 15 毫秒
621.
Abstract:  Much research has focused on identifying traits that can act as useful indicators of how habitat loss affects the extinction risk of species, and the results are mixed. We developed 2 simple, rapid-assessment models of the susceptibility of species to habitat loss. We based both on an index of range size, but one also incorporated an index of body mass and the other an index combining habitat and dietary specialization. We applied the models to samples of birds (Accipitridae and Bucerotidae) and to the lemurs of Madagascar and compared the models' classifications of risk with the IUCN's global threat status of each species. The model derived from ecological attributes was much more robust than the one derived from body mass. Ecological attributes identified threatened birds and lemurs with an average of 80% accuracy and endangered and critically endangered species with 100% accuracy and identified some species not currently listed as threatened that almost certainly warrant conservation consideration. Appropriate analysis of even fairly crude biological information can help raise early-warning flags to the relative susceptibilities of species to habitat loss and thus provide a useful and rapid technique for highlighting potential species-level conservation issues. Advantages of this approach to classifying risk include flexibility in the specialization parameters used as well as its applicability at a range of spatial scales.  相似文献   
622.
The City of Cape May, New Jersey, draws its primary water supply from the Cohansey Aquifer, a unit serving residential, community, and industrial users throughout the Coastal Plain. By the year 2000, projected population growth will impose a peak water demand beyond available supplies. In addition, regional over-pumping threatens the Cohansey with saltwater intrusion, placing the city wells at risk by 1998. In the early-to mid 1990s, three broad categories of water-supply alternatives were evaluated by regional, state, and federal agencies — additional pumping from the Cohansey, conjunctive use of the Cohansey with other aquifers, and desalination of brackish groundwater. An approach was adopted in 1996 which derives up to 2 MGD from desalination of brackish groundwater, with the remaining peak demand satisfied by short-term pumpage from existing wells in the Cohansey. The first of two wells has been completed, yielding 1.4 MGD of brackish groundwater. Similar performance from the second well will exceed the design goal. When the initial system comes on line during the summer of 1998, New Jersey will have its first public water supply derived from desalinated groundwater. The use of desalinated groundwater balances competing demands for water resources in the southern Cape Region of New Jersey, allowing continued economic growth while reducing human impacts on a threatened aquifer.  相似文献   
623.
A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.  相似文献   
624.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   
625.
ABSTRACT: Competition for water resources is becoming an increasingly important issue in the southeastern U.S. The potential impacts of future precipitation and runoff estimated by a transient global climate model (HADCM2) on competing water resources in the Southeast has been conducted. Issues of agricultural management, irrigation water withdrawals, and water quality were studied over three time periods: 1974–1993, 2020–2039, and 2080–2099 in five water basins identified previously as exhibiting water-related problems. These basins, which encompass the boundary between Alabama and Mississippi, cover four important agricultural counties in Mississippi. Irrigation water requirements generated by crop growth models for corn, soybeans, and winter wheat were coupled with monthly runoff for the impacted basins estimated by the SWAT water balance model. The results of the study reveal that in the next 20–40 years water availability in the southern portions of the study area will decline as much as 10 percent during times when water requirements for agricultural production are crucial. Maintaining or expanding existing crop yields under future climate regimes may require additional irrigation water and increase competition among other uses such as domestic, industrial, recreational, and ecosystem quality.  相似文献   
626.
ABSTRACT: Recharge is an important parameter for models that simulate water and contaminant transport in unconfined aquifers. Unfortunately, measurements of actual recharge are not usually available causing recharge to be estimated or possibly added to the calibration procedure. In this study, differences between observed water-table elevations and water-table elevations simulated with a model based on the one-dimensional Boussinesq equation were used to identify both the timing and quantity of recharge to an alluvial valley aquifer. Observed water table elevations and river stage data were recorded during a five-year period from 1991 to 1995 at the Ohio Management Systems Evaluation Area located in south-central Ohio. Direct recharge attributed to overbank flow during and shortly after flood conditions accounted for 65 percent of the total recharge computed during the five-year study period. Recharge of excess infiltration to the aquifer was intermittent and occurred soon after large rainfall events and high river stage. Specification of constant recharge with time values in ground-water simulation models seems inappropriate for stream-aquifer systems given the strong influence of the river on water table elevations in these systems.  相似文献   
627.
ABSTRACT: Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federalstate collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991–1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 μ/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.  相似文献   
628.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   
629.
The city of Angkor, capital of the Khmer empire from the 9th to 15th century CE, is well known for its impressive temples, but recent research has uncovered an extensive channel network stretching across over 1000 km2. The channel network with large reservoirs (termed baray) formed the structure of the city and was the basis for its water management. The annual long dry season associated with the monsoon climate has challenged water management for centuries, and the extensive water management system must have played an important role in the mitigation of such marked seasonality. However, by changing the natural water courses with off-take channels the original catchments were also reshaped. Moreover, severe problems of erosion and sedimentation in human built channels evolved and impacted on the whole water management system. This paper describes the present hydrology of the area and discusses the impacts of water management on hydrology during the Angkor era. The paper, moreover, attempts to summarise lessons that could be learnt from Angkorian water management that might apply to present challenges within the field.  相似文献   
630.
We evaluated long‐term trends and predictors of groundwater levels by month from two well‐studied northern New England forested headwater glacial aquifers: Sleepers River, Vermont, 44 wells, 1992‐2013; and Hubbard Brook, New Hampshire, 15 wells, 1979‐2004. Based on Kendall Tau tests with Sen slope determination, a surprising number of well‐month combinations had negative trends (decreasing water levels) over the respective periods. Sleepers River had slightly more positive than negative trends overall, but among the significant trends (p < 0.1), negative trends dominated 67 to 40. At Hubbard Brook, negative trends outnumbered positive trends by a nearly 2:1 margin and all seven of the significant trends were negative. The negative trends occurred despite generally increasing trends in monthly and annual precipitation. This counterintuitive pattern may be a result of increased precipitation intensity causing higher runoff at the expense of recharge, such that evapotranspiration demand draws down groundwater storage. We evaluated predictors of month‐end water levels by multiple regression of 18 variables related to climate, streamflow, snowpack, and prior month water level. Monthly flow and prior month water level were the two strongest predictors for most months at both sites. The predictive power and ready availability of streamflow data can be exploited as a proxy to extend limited groundwater level records over longer time periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号