首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   91篇
  国内免费   43篇
安全科学   42篇
废物处理   9篇
环保管理   732篇
综合类   109篇
基础理论   104篇
污染及防治   11篇
评价与监测   25篇
社会与环境   30篇
灾害及防治   7篇
  2023年   21篇
  2021年   11篇
  2020年   7篇
  2019年   19篇
  2018年   18篇
  2017年   37篇
  2016年   23篇
  2015年   28篇
  2014年   22篇
  2013年   30篇
  2012年   31篇
  2011年   31篇
  2010年   32篇
  2009年   29篇
  2008年   38篇
  2007年   61篇
  2006年   33篇
  2005年   33篇
  2004年   48篇
  2003年   39篇
  2002年   36篇
  2001年   36篇
  2000年   34篇
  1999年   36篇
  1998年   44篇
  1997年   26篇
  1996年   43篇
  1995年   19篇
  1994年   20篇
  1993年   17篇
  1992年   15篇
  1991年   16篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   14篇
  1985年   8篇
  1983年   5篇
  1982年   12篇
  1981年   6篇
  1980年   15篇
  1979年   6篇
  1978年   7篇
  1977年   2篇
  1976年   4篇
  1975年   8篇
  1974年   2篇
  1973年   5篇
  1972年   6篇
  1971年   8篇
排序方式: 共有1069条查询结果,搜索用时 578 毫秒
721.
大型构件试品实施振动试验时的若干问题探讨   总被引:1,自引:1,他引:1  
大型构件试品振动试验是一项比较复杂的工程试验,它除了同通常振动试验一样进行准备外,由于它的体型大、质量大、重心高且多偏置、振型复杂等特点,还必须进行针对性的试验可行性、试验安全性及振动控制方法的论证和选择,才能使试验顺利进行且万无一失。本文通过作者实践中总结积累的经验,阐述论证的内容和选择的方法,希望起一个抛砖引玉的作用,以期引起试验同行的关注。  相似文献   
722.
ABSTRACT: A downspout diversion program in an urban area is evaluated to assess the impacts on sanitary sewer flow volumes and cost effectiveness. Sanitary sewer flows and wastewater treatment cost data are compared for the five years before and 1.25 years after the downspout diversion was completed. In order to establish a cause and effect relationship between flow volumes and downspout diversion, measurements of precipitation, consumption patterns, and system loss (maintenance, fire flows, main ruptures) for the before and after time periods were obtained. The results indicate the downspout diversion contributed to a reduction of over 25 percent in the mean flow volumes within the sanitary sewer collection network during all rainfall events, with flow reductions ranging from 25 percent to 62 percent for rainfall depths between 6 mm (0.25 inches) and 25.4 mm (1.0 inches). Costs incurred for wastewater treatment were also reduced significantly, as overtime for overflow maintenance was eliminated. Downspout diversion is a viable nonstructural alternative for sthrmwater flow reduction in highly urbanized communities which may lack available space for large scale detention facilities.  相似文献   
723.
ABSTRACT: A complex watershed-scale water quality simulation model, the Hydrological Simulation Program-FORTRAN (HSPF) model, was calibrated for a 16 km2 catchment. The simulation step size was 0.33 hours with predicted and recorded hydrologic flows compared on an annual and monthly basis during a total calibration period of four years. Unguided numerical optimization when applied alone did not yield a model parameter set with acceptable predictive capability; instead, it was necessary to apply a critical process that included sensitivity analysis, numerical optimization, and testing of derived model parameter sets to evaluate their performance for periods other than those for which they were determined. Using this critical calibration process, the model was proven to have significant predictive capability. Numerical optimization is an aid for model calibration, but it must not be used blindly.  相似文献   
724.
ABSTRACT: Earthen waste storage structures (EWSS) associated with large confined (concentrated) animal feeding operations (CAFOs) were evaluated for their potential to impact water resources in Iowa. A representative sample of 34 EWSS from a digital database of 439 lagoons and basins permitted between 1987 and 1994 was analyzed. Eighteen percent (6 of 34) directly overlie alluvial aquifers that are used widely for potable water supply. Ninety‐four percent (29 of 31) were constructed below the water table based on EWSS depth data. At 65 percent of EWSS (22 of 34), 50 percent or more of the manure‐spreading area (MSA) has a water‐table depth less than 1.6 m. At 74 percent of EWSS (25 of 34), 90 percent or more of the MSA contains soil with vertical K exceeding 25.4 mm/hr. Seventy‐one percent (24 of 34) occur where 10 percent or less of the MSA is frequently flooded. No significant differences were found among leakage rates due to aquifer vulnerability class or surficial material. However, at least 50 percent of EWSS (14 of 28) leaked at rates significantly greater than 1.6 mm/d under the new construction standard. The estimated 5,000 unregulated CAFOs may have a greater potential to impact water resources in Iowa.  相似文献   
725.
ABSTRACT: The National Weather Service River Forecast System (NWSRFS) is the new hydrologic prediction model for the National Weather Service (NWS) and provides guidance to meteorologists who issue NWS Flood Warnings to the public. The primary submodel within NWSRFS is the Sacramento Soil Moisture Accounting (SAC-SMA) model, which predicts surface runoff as a function of meteorological, geological, and soil data calibrated over a watershed. The research presented here focuses on a different approach to NWSRFS calibrations: greater utilization of geologic and soil data, in order to give the model better predictive capability. Geologic understanding can create better insights for the initial estimation and subsequent adjustment of SAC-SMA parameters. Fifteen calibrated Pacific Northwest drainages reveal a variety of hydrogeologic responses. For example, results for the Mount Rainier drainages show the complex interaction between active glaciers, impermeable volcanic surfaces, and glacial sedimentary valleys. Unweathered volcanic terrains show flashy peak flows, fast flow recessions, and low baseflow. Sedimentary terrains display subdued peak flows, slow flow recessions, and higher baseflow. Operational implementation of these calibrations at the NWS's Northwest River Forecast Center has yielded more accurate predictive results since 1995. NWS hydrologic forecasters nationwide could benefit from using drainage basin geologic characteristics in understanding and improving model calibrations and real time forecasts.  相似文献   
726.
ABSTRACT: Transport of agricultural chemicals in runoff and recharge waters from snowmelt and soil thawing may represent a significant event in terms of annual contaminant loadings in temperate regions. Improved understanding of the melt dynamics of shallow snowpacks is necessary to fully assess the implications for water quality. The objective of this study was to measure the energy balance components of a corn (Zea mays L.) stubble field during the melting of its snowcover. Net radiation (Rn), soil (G), sensible (H), and latent (Q) heat fluxes were measured in a field near Ames, Iowa, during the winter of 1994–1995. Energy consumed by melting including change in energy storage of the snowpack was determined as the residual of the measured energy balance. There was continuous snowcover at the field site for 71 days (maximum depth = 222 mm) followed by an open period of 11 days before additional snowfall and a second melt period. The net radiation and snow melt/energy storage change (5) terms dominated the energy balance during both measurement intervals. Peak daily sensible and latent heat fluxes were below 100 W m?2 on all days except the last day of the second melt period. There was good agreement between predicted and measured values of H and Q during the melting of an aged snow layer but poorer agreement during the melt of fresh snow. Both snowpacks melted rapidly and coincident changes in soil moisture storage were observed. Improved estimates of Q and H, especially for partially open surfaces, will require better characterization of the surface aerodynamic properties and spatially-representative surface temperature measurements.  相似文献   
727.
ABSTRACT: Optimization formulations for hydraulic control that take the form of linear programs possess a corresponding dual linear program. The economic and physical interpretations of the dual linear program are examined for formulations in which hydraulic head in groundwater systems is constiained. In each case it is shown that the dual linear program has a physically meaningful interpretation. For a hydraulic gradient control formulation used for remedial analysis it is shown that the dual variable can be interpreted as the remedial benefit due to each gradient control constraint. The dual linear program maximizes the remedial benefit. The value of the dual variable can be used to compute such useful properties as the total remedial benefit of pumping at a specific location. For a formulation that optimizes aquifer yield while constraining drawdown the dual variable can be used to measure the total cost of drawdown capacity consumption per unit of pumping at a specific location. The dual program minimizes the cost of drawdown capacity consumption. By examining the meaning of the dual linear program an alternate statement of the problem under study is revealed. Quantities arising from the dual program add to the value of the optimization approach. Significant new information can be derived from existing linear optimization formulations with minimal additional computational effort.  相似文献   
728.
ABSTRACT: Genetic algorithms (GA) and simulated annealing (SA), two global search techniques, are coupled with MODFLOW, a commonly used groundwater flow simulation code, for optimal management of ground water resources under general conditions. The coupled simulation-optimization models allow for multiple management periods in which optimal pumping rates vary with time to reflect the changing flow conditions. The objective functions of the management models are of a very general nature, incorporating multiple cost terms such as the drilling cost, the installation cost, and the pumping cost. The models are first applied to two-dimensional maximum yield and minimum cost water supply problems with a single management period, and then to a multiple management period problem. The strengths and limitations of the GA and SA based models are evaluated by comparing the results with those obtained using linear programming, nonlinear programming, and differential dynamic programming. For the three example problems examined in this study, the GA and SA based models yield nearly identical or better solutions than the various programming methods. While SA tends to outperform GA in terms of the number of forward simulations needed, it uses more empirical control parameters which have significant impact on solution efficiency but are difficult to determine.  相似文献   
729.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model, designed for use on rural ungaged basins and incorporating a GRASS GIS interface, was used to model the hydrologic response of the Ariel Creek watershed of northeastern Pennsylvania. Model evaluation of daily flow prior to calibration revealed a deviation of runoff volumes (Dv) of 68.3 percent and a Nash-Sutcliffe coefficient of-0.03. Model performance was affected by unusually large observed snowmelt events and the inability of the model to accurately simulate baseflow, which was influenced by the presence of fragipans. Seventy-five percent of the soils in the watershed contain fragipans. Model calibration yielded a Dv of 39.9 percent and a Nash-Sutcliffe coefficient of 0.04, when compared on a daily basis. Monthly comparisons yielded a Nash-Sutcliffe coefficient of 0.14. Snowmelt events in the springs of 1993 and 1994, which were unusually severe, were not adequately simulated. Neglecting these severe events, which produced the largest and third largest measured flows for the period of record, a Dv of 4.1 percent and Nash-Sutcliffe coefficient of 0.20 were calculated on a daily comparison, while on a monthly basis the Nash-Sutciffe coefficient was 0.55. These results suggest that the SWAT model is better suited to longer period simulations of hydrologic yields. Baseflow volumes were accurately simulated after calibration (Dv= -0.2 percent). Refinements made to the algorithms controlling subsurface hydrology and snowmelt, to better represent the presence of fragipans and snowmelt events, would likely improve model performance.  相似文献   
730.
ABSTRACT: The effects of changes in the landscape and climate over geological time are plain to see in the present hydrological regime. More recent anthropogenic changes may also have effects on our way of life. A prerequisite to predicting such effects is that we understand the interactions between climate, landscape and the hydrological regime. A semi-distributed hydrological model (SLURP) has been developed which can be used to investigate, in a simple way, the links between landscape, climate and hydrology for watersheds of various sizes. As well as using data from the observed climate network, the model has been used with data from atmospheric models to investigate possible changes in hydrology. A critical input to such a model is knowledge of the links between landscape and climate. While direct anthropogenic effects such as changes in forested area may presently be included, the indirect effects of climate on landscape and vice versa are not yet modeled well enough to be explicitly included. The development of models describing climate-landscape relationships such as regeneration, development and breakup, water and carbon fluxes at species, ecosystem and biome level is a necessary step in understanding and predicting the effects of changes in climate on landscape and on water resources. Forest is the predominant land cover in Canada covering 453 Mha and productivity/succession models for major forest types should be included in an integrated climate-landscape-water simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号