首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   33篇
  国内免费   5篇
废物处理   1篇
环保管理   166篇
综合类   16篇
基础理论   12篇
评价与监测   9篇
社会与环境   3篇
灾害及防治   1篇
  2023年   3篇
  2021年   2篇
  2019年   5篇
  2018年   5篇
  2017年   11篇
  2016年   20篇
  2015年   4篇
  2014年   9篇
  2013年   11篇
  2012年   8篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   8篇
  2007年   14篇
  2006年   6篇
  2005年   6篇
  2004年   9篇
  2003年   7篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
201.
A ‘forest–hydrology–poverty nexus’ hypothesis asserts that deforestation in poor upland areas simultaneously threatens biodiversity and increases the incidence of flooding, sedimentation and other damaging hydrological processes. This paper uses rough heuristics to assess the applicability of this hypothesis to two montane forested countries in Central America: Guatemala and Honduras. We do so by using simple rules of thumb to identify watersheds at greater risk of hydrologically significant land use change, using information about land cover, slope, and watershed size. The location of these watersheds is compared to spatial maps of poverty and forests. We find plausible evidence for a forest–biodiversity–poverty connection in Guatemala, and to a lesser extent in Honduras.  相似文献   
202.
为分析小流域水质评价方法的准确度和适应度,以小安溪流域2017年和2018年的监测数据为基础,利用单因子评价法、综合指数评价法、内梅罗污染指数法和加拿大水质指数法进行水质评价,利用等标水质分析的思想对比了四种方法的评价准确度。评价结果显示:单因子评价法更适合评价水质分布较均匀的流域,内梅罗污染指数法要更为客观一些,加拿大水质指数法更适合较大的、评价指标较多的流域。综合指数评价法是最适合小流域水质评价的。其结果为小流域水质评价方法选择提供了借鉴。  相似文献   
203.
ABSTRACT: In an effort to adopt more holistic ecosystem approaches to resource assessment and management, many state and federal agencies have begun using watershed or ecoregion frameworks. Although few would question the need to make this move from dealing with problems and issues on a case by case or point-type basis to broader regional contexts, misunderstanding of each of the frameworks has resulted in inconsistency in their use and ultimate effectiveness. The focus of this paper is on the clarification of both frameworks. We stress that the issue is not whether to use watersheds (or basins or hydrologic units) or ecoregions for needs such as developing ecosystem management and non-point source pollution strategies or structuring water quality regulatory programs, but how to correctly use the frameworks together. Definitions, uses, and misuses of each of the frameworks are discussed as well as ways watersheds and ecoregions can be and have been used together effectively to meet resource management needs.  相似文献   
204.
A critique of EPA's index of watershed indicators   总被引:4,自引:0,他引:4  
Numerous indices have been developed to assess water quality and the impact of programs to improve quality. The Index of Watershed Indicators (IWI) is one such index created by the US Environmental Protection Agency to assess watershed vulnerability and condition in the United States. The credibility and applicability of subjective indices such as IWI depends upon their ability to withstand tests that challenge their internal consistency and interpretation. This paper critiques IWI on the basis of these tests and other considerations, and suggests that explicitly basing the index on multiattribute utility theory and methods could help resolve many of these difficulties.  相似文献   
205.
The Streamflow Synthesis and Reservoir Regulation (SSARR) model was calibrated and verified on the Madison and Gallatin watersheds in the upper Missouri River drainage. The study was performed to determine if the SSARR model could simulate snowmelt-runoff volumes to effect better operation of six multipurpose reservoirs on the Missouri River. Physical watershed characteristics and parameter sensitivity are incorporated into a procedure which expedites model calibration. Criteria are established to facilitate parameter development and to objectively evaluate calibration and verification results. A ratio of simulated to observed snowmelt-runoff volumes of the Madison River averaged 1.00 and 1.02 for calibration (N = 8 years) and verification (N = 6 years) with corresponding standard deviations of 0.08 and 0.13. Gallatin volume ratios averaged 0.99 and 0.95 for calibration (N = 7 years) and verification (N = 5 years) with respective standard deviations of 0.08 and 0.28.  相似文献   
206.
ABSTRACT: Carbon content was measured in sediments deposited in 58 small reservoirs across the United States. Reservoirs varied from 0.2 to 4000 km2 in surface area. The carbon content of sediment ranged from 0.3 to 5.6 percent, with a mean of 1.9 ± 1.1 percent. No significant differences between the soil and sediment carbon content were found using a paired t-test or ANOVA. The carbon content of sediments in reservoirs was similar to the carbon content of surface soils (0–10 cm) in the watershed, except in watersheds with shrub or steppe (desert) vegetation. Based on the sediment accumulation rates measured in each reservoir, the calculated organic carbon accumulation rates among reservoirs ranged from 26 to 3700 gC m-2yr-1, with a mean of 675 ± 739 gC m-2yr-1. The carbon content and accumulation rates were highest in sediments from grassland watersheds. High variability was found in carbon content, carbon accumulation, and sediment accumulation rates due to individual watershed and reservoir characteristics rather than to any broad physiographic patterns. The carbon accumulation rates in these reservoir sediments indicate that reservoir sediments could be a significant sink for organic carbon.  相似文献   
207.
Abstract: We describe relationships between pH, specific conductance, calcium, magnesium, chloride, sulfate, nitrogen, and phosphorus and land‐use patterns in the Mullica River basin, a major New Jersey Pinelands watershed, and determine the thresholds at which significant changes in water quality occur. Nonpoint sources are the main contributors of pollutants to surface waters in the basin. Using multiple regression and water‐quality data for 25 stream sites, we determine the percentage of variation in the water‐quality data explained by urban land and upland agriculture and evaluate whether the proximity of these land uses influences water‐quality/land‐use relationships. We use a second, independently collected water‐quality dataset to validate the statistical models. The multiple‐regression results indicate that water‐quality degradation in the study area is associated with basin‐wide upland land uses, which are generally good predictors of water‐quality conditions, and that both urban land and upland agriculture must be included in models to more fully describe the relationship between watershed disturbance and water quality. Including the proximity of land uses did not improve the relationship between land use and water quality. Ten‐percent altered‐land cover in a basin represents the threshold at which a significant deviation from reference‐site water‐quality conditions occurs in the Mullica River basin.  相似文献   
208.
Wigington, Parker J., Jr., Scott G. Leibowitz, Randy L. Comeleo, and Joseph L. Ebersole, 2012. Oregon Hydrologic Landscapes: A Classification Framework. Journal of the American Water Resources Association (JAWRA) 1‐20. DOI: 10.1111/jawr.12009 Abstract: There is a growing need for hydrologic classification systems that can provide a basis for broad‐scale assessments of the hydrologic functions of landscapes and watersheds and their responses to stressors such as climate change. We developed a hydrologic landscape (HL) classification approach that describes factors of climate‐watershed systems that control the hydrologic characteristics of watersheds. Our assessment units are incremental watersheds (i.e., headwater watersheds or areas draining directly into stream reaches). Major components of the classification include indices of annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. To evaluate the usefulness of our approach, we identified 30 rivers with long‐term streamflow‐gauging records and without major diversions and impoundments. We used statistical clustering to group the streams based on the shapes of their annual hydrographs. Comparison of the streamflow clusters and HL distributions within river basin clusters shows that the Oregon HL approach has the ability to provide insights about the expected hydrologic behavior of HLs and larger river basins. The Oregon HL approach has potential to be a useful framework for comparing hydrologic attributes of streams and rivers in the Pacific Northwest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号