首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1949篇
  免费   125篇
  国内免费   223篇
安全科学   131篇
废物处理   21篇
环保管理   544篇
综合类   627篇
基础理论   383篇
环境理论   1篇
污染及防治   111篇
评价与监测   91篇
社会与环境   325篇
灾害及防治   63篇
  2024年   8篇
  2023年   29篇
  2022年   44篇
  2021年   72篇
  2020年   49篇
  2019年   45篇
  2018年   49篇
  2017年   68篇
  2016年   78篇
  2015年   77篇
  2014年   51篇
  2013年   131篇
  2012年   93篇
  2011年   156篇
  2010年   98篇
  2009年   132篇
  2008年   103篇
  2007年   107篇
  2006年   124篇
  2005年   78篇
  2004年   77篇
  2003年   65篇
  2002年   63篇
  2001年   39篇
  2000年   58篇
  1999年   42篇
  1998年   32篇
  1997年   33篇
  1996年   32篇
  1995年   28篇
  1994年   31篇
  1993年   19篇
  1992年   9篇
  1991年   7篇
  1990年   13篇
  1989年   14篇
  1988年   9篇
  1987年   14篇
  1986年   9篇
  1985年   9篇
  1983年   8篇
  1981年   10篇
  1980年   12篇
  1979年   15篇
  1978年   8篇
  1977年   5篇
  1975年   5篇
  1973年   6篇
  1972年   10篇
  1971年   7篇
排序方式: 共有2297条查询结果,搜索用时 15 毫秒
441.
对北京市地面监测站点的CO浓度进行分析,探讨其浓度水平、变化趋势和时空分布特征。2014年春、夏、秋、冬四季北京市CO平均浓度分别为1.06、0.87、1.34、2.17 mg/m3。CO浓度均呈双峰型变化,第一个峰值出现在07:00-09:00,主要由交通早高峰的排放引起;第二个峰值出现在23:00左右,主要受交通晚高峰排放和夜间边界层高度降低的挤压效应的共同影响。从空间分布来看,全年整体呈现南高北低的分布特征,尤其是秋、冬季较为明显,体现了工业布局和区域传输对CO的影响。从全年来看,湿度对CO浓度的影响最大。对2014年冬季北京市的一次高CO浓度分析结果表明,此次过程是由本地排放和区域传输共同造成的,气象要素中地面气压对CO浓度影响最大。  相似文献   
442.
2016—2017年武汉市城区大气PM2.5污染特征及来源解析   总被引:1,自引:0,他引:1  
利用2016年1月至2017年9月湖北省环境监测中心站大气复合污染自动监测站的在线监测数据,对武汉市城区PM2.5的污染特征及主要来源进行解析。结果表明,武汉市城区PM2.5质量浓度呈现出明显的季节差异,季节变化规律为冬季>春季>秋季>夏季。水溶性离子的主要成分SO42-、NO3-和NH4+占总离子质量浓度的82.0%。PM2.5中阴离子相对阳离子较为亏损,颗粒整体呈碱性。夏季气态污染物的氧化程度较高且SO2较NO2氧化程度高。后向轨迹分析结果表明,区域传输是武汉市PM2.5的一个重要来源,在4个典型重污染阶段,武汉市分别受到局地、东北、西北及西南方向气团传输的影响。PMF模型解析出武汉市PM2.5五大主要来源及平均贡献率:扬尘22.0%、机动车排放27.7%、二次气溶胶21.6%、重油燃烧14.9%和生物质燃烧13.8%。  相似文献   
443.
连续同时监测天津市大港石化发展规划区区域废水中的CODCr和CODMn,并考查其线性相关性后得出CODCr=4.96CODMn+116.3,相关系数为0.750。该回归方程适用于类似石油化工工业区区域废水中CODCr和CODMn间的换算  相似文献   
444.
随着《大气污染防治行动计划》和《打赢蓝天保卫战三年行动计划》的相继实施,在高强度的污染治理下,中东部地区PM2.5污染改善效果显著。为探讨在PM2.5浓度不断降低的背景下,仍时有发生的武汉冬季重污染过程的成因及特征,以2020年12月武汉地区一次长达10 d的重污染过程为例,利用多种观测数据和嵌套网格空气质量预报模式系统(NAQPMS)分析污染过程中PM2.5的化学组分特征和区域贡献等。结果表明:污染日二次无机盐SNA (SO42-、NO3-和NH4+)和碳质组分(EC和OC)在PM2.5中的占比高(分别为78%和18%),NO3-的占比从清洁日的36%上升到污染日的46%,是污染过程中占比最高的化学组分。污染期间,NO3-和SO42-的浓度比为2.9~6.1,因此二次无机盐的主要来源可能是移动源;OC和EC的浓度比为3.0~9.8,因此碳质组分的主要来源可能是燃煤源。污染期间主要有河南-孝感-武汉和安徽-黄冈-武汉2条污染传输带,污染物传输以武汉周边城市的近距离输送为主,随着污染程度加重,武汉本地及武汉城市圈的区域贡献增加。重度污染天是静稳天气下持续的偏弱东风和西北风输送的污染气团在不易扩散的天气条件下累积形成的。  相似文献   
445.
分析了2015年南京市二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)和臭氧(O3)的污染特征。南京市SO2、NO2、CO和O3的年均浓度分别为19.3 μg·m-3、50.2 μg·m-3、0.972 mg·m-3和114 μg·m-3;SO2和CO污染相对较轻,NO2和O3污染相对严重。SO2、CO和O3的日变化呈"单峰型",而NO2的呈"双峰型";SO2、NO2和CO浓度在冬季最高,夏季最低,而O3相反。秸秆焚烧产物的区域输送在夏收(6月)和秋收(11月)时节对南京市CO的贡献显著。各监测点及全市的气态污染物普遍表现出"反周末效应",指示外来污染源。  相似文献   
446.
应用一种基于长光程差分吸收光谱(LP-DOAS)原理的仪器,对上海市典型化学工业区进行了长期自动监测。该测量系统搭建于化工区西北方向边界上,一旦污染物浓度超标就会报警,起到边界围栏的作用。选取同站点GC-FID系统测量的甲苯数据与LP-DOAS系统测量的甲苯数据进行了比对分析,2台仪器日均浓度值的拟合系数R2为0.87,验证了长光程测量系统数据的有效性。结合西北边界监测站点的气象数据对测量的HCl数据进行日均、月度平均分析,发现HCl的浓度变化主要与化工区的排放有关。采用基于拉格朗日传输、扩散模式的HYSPLIT_4模式分别对2017—2019年中每年6月份和2017年全年进行污染物追迹分析,发现2017—2019年中每年6月份有95%左右的污染物扩散时会经过上海城区,对上海地区造成影响。进一步分析表明,2017年,夏季化工区排放的污染物对上海城区的影响最大,秋季对上海城区的影响最小。上述研究结果可为上海市大气环境监测及治理提供参考。  相似文献   
447.
大气环境保护标准是控制大气污染的重要手段,为进一步提高北京市大气环境质量,完善北京市大气环境保护标准。在深入研究国家和北京市大气环境标准体系现状的基础上,分析了目前标准体系存在的不足,并提出了体系完善的总体思路。根据北京市大气标准体系现状和北京市经济社会的发展,提出5个需要修订和制订的标准,分别是大气污染物综合排放标准、冶金建材行业及其它工业炉窑大气污染物排放标准、重型汽车整车排放测试试验方法标准、施工场地扬尘排放标准、建筑外墙涂料挥发性有机物含量限制标准。标准体系的完善有利于北京市大气污染的管理控制,具有重大现实意义。  相似文献   
448.
根据长三角空气质量区域预报工作的实际需要,对分区文字预报和落区图预报两种方式分别制定了不同的空气质量指数级别预报准确性评估方法。分区文字预报根据设定的预报准确性判定方法计算预报评分,落区图预报按区域内预报准确城市占比进行准确率统计。分区文字预报结果显示,2017年长三角区域的预报准确天数占比为62. 2%,预报评分为70. 2,区域预报评估效果良好。落区图预报评估结果显示,预报级别偏差具有地域性差异,安徽北部、江苏北部和江西中北部预报等级偏高,长三角中南部沿海城市预报等级偏低。该套评估方法可为区域空气质量预报偏差成因分析提供依据,为区域预报工作的改进提供定量参考。  相似文献   
449.
Local pollution and the cross-boundary transmission of pollutants between cities have an inevitable impact on the atmosphere. Quantitative assessments of the contribution of transport to pollution in inland and coastal cities are necessary for the implementation of practical, regional, and joint emission control strategies. In this study, the Comprehensive Air Quality Model (CAMx), together with the Weather Research and Forecasting model (WRF), was used to simulate the contributions to pollution of different cities in 2016. The monthly inflow, outflow, and net flux from the ground to the extended layers served as the three main indicators for the analysis of the interactions of PM2.5 transport between adjacent cities. Between inland and coastal cities, the magnitude of inflow and outflow are larger in the former than in the latter. The inflow flux in the inland cities (Beijing and Shijiazhuang) was 10.6 and 10.7 kt/day, respectively, while that in the coastal cities (Tianjin, Shanghai, Hefei, Nanjing, and Hangzhou) was 9.1, 3.3, 5.8, 4.4, and 3.7 kt/day, respectively. In terms of variation over the year, the strongest inflow in the BTH region occurred in April, followed by October, July, and January, while that in the coastal cities in YRD occurred in January, followed by October, April, and July. Therefore, based on the flux intensity calculations and the transport flux pathways, effective joint control measures can be provided with scientific support, and a better understanding of the evolutionary mechanism among inland and coastal cities can be acquired.  相似文献   
450.

土地利用变化是影响碳固存变化的重要因素,土地利用优化对实现区域碳平衡具有重要作用。以广西西江清水河流域为研究对象,基于2000年、2010年和2020年土地利用数据,通过FLUS-InVEST耦合模型预测2060年清水河流域4种模拟情景(基线情景、耕地保护情景、水域保护情景、高碳储用地保护情景)下土地利用变化与碳储量的时空发展特征;针对高、中、低碳储能力等级区域适宜发展的方向,构建基于碳储量最大化的灰色线性规划模型,优化土地利用数量结构并运用FLUS模型模拟土地利用空间布局;利用Fragstats软件分析流域上、中、下游区域不同土地利用类型的形态格局,探讨其与碳储量的相关性并提出相应的优化策略。结果表明:1)4种模拟情景下,2060年流域碳储量仅在高碳储用地保护情景下稳定提升,其他3种情景都大幅下降;2)基于优化方案,2060年流域内林地、湿地和水域面积增加,建设用地面积稳定增长,草地、耕地面积相对减少且连片耕地保持不变,流域整体碳储量增长达1.32×106 t;3)流域土地利用形态格局影响碳储量,且不同流段存在空间异质性,整体上斑块呈现复杂不规则的形态和较高的聚集度、连接度,有利于提高区域整体碳储量。优化策略能更好地满足流域不同区域的发展需求并统筹流域整体发展,增加流域碳储量的同时推动总体效益最优化。

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号