首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1310篇
  免费   111篇
  国内免费   230篇
安全科学   249篇
废物处理   28篇
环保管理   294篇
综合类   747篇
基础理论   73篇
污染及防治   58篇
评价与监测   63篇
社会与环境   92篇
灾害及防治   47篇
  2023年   17篇
  2022年   48篇
  2021年   52篇
  2020年   54篇
  2019年   39篇
  2018年   32篇
  2017年   42篇
  2016年   50篇
  2015年   54篇
  2014年   78篇
  2013年   71篇
  2012年   111篇
  2011年   129篇
  2010年   96篇
  2009年   94篇
  2008年   59篇
  2007年   92篇
  2006年   78篇
  2005年   65篇
  2004年   58篇
  2003年   49篇
  2002年   51篇
  2001年   35篇
  2000年   27篇
  1999年   16篇
  1998年   14篇
  1997年   11篇
  1996年   7篇
  1995年   12篇
  1994年   3篇
  1993年   5篇
  1992年   8篇
  1991年   7篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1982年   7篇
  1981年   5篇
  1980年   8篇
  1979年   2篇
  1978年   6篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   3篇
排序方式: 共有1651条查询结果,搜索用时 31 毫秒
81.
Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter- current flow operation of FO membrane process.  相似文献   
82.
A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and compared with the conventional method based on the selective pressure of settling velocity (settling-velocity cultivation method, SVCM). Results indicated that aerobic granules could be cultivated in continuous operation mode by this developed method within 14 days. Although in the granulation process, under particle-size selective pressure, mixed liquor suspended solids (MLSS) in the reactor fluctuated greatly and filamentous bacteria dominated the sludge system during the initial operation days, no obvious difference in profile was found between the aerobic granules cultivated by PSCM and SVCM. Moreover, aerobic granules cultivated by PSCM presented larger diameter, lower water content and higher specific rates of nitrification, denitrifieation and phosphorus removal, but lower settling velocity. Under long term operation of more than 30 days, aerobic granules in the continuous-flow reactor could remain stable and obtain good chemical oxygen demand (COD), NH4^+-N, total nitrogen (TN) and total phosphorus (TP) removal. The results indicate that PSCM was dependent on the cultivation and maintenance of the stability of aerobic granules in continuous-flow bioreactors.  相似文献   
83.
六都寨水库夏季富营养化状况与浮游植物分布特征研究   总被引:2,自引:0,他引:2  
六都寨水库是湖南省邵阳市重要的备用水源地,本文在2012年夏季对六都寨水库水体理化指标和浮游植物群落结构进行调查,评价水库富营养化状况.结果显示六都寨水库氮、磷浓度较高,TN和TP平均值分别为0.88和0.04 mg·L-1,部分点位超过Ⅲ类水标准.调查期间库区浮游植物总细胞密度变化范围为3.68×106~5.84×106cells·L-1,水库中心区域以绿藻为主,靠近坝首处则以蓝藻为主.各点位Shannon-Wiener多样性指数(H')介于2.19~3.17之间,Chl.a浓度范围为3.64~20.24μg·L-1,综合营养状态指数(TLI)为38.51~48.11,六都寨水库水体已处于中营养状态.要从根本上控制六都寨水库水体富营养化进程,防范蓝藻水华风险,需通过长期科学监控和综合防治.  相似文献   
84.
采用职业卫生学调查和职业暴露风险评估方法,对选定的苯类物质非密闭操作过程较集中的芳烃装置进行职业暴露分析和评估,为石化企业苯类物质的健康风险控制提供依据。  相似文献   
85.
随着不断增长的环境空气自动监测数据量与滞后的数据管理方式之间的矛盾日益凸显,现有的环境空气自动监测平台已出现了一定程度的滞后,逐渐不能满足基层监测部门、决策机构和社会各界的要求,亟待更新和完善。对现有环境空气自动监测业务平台建设思路加以更新和完善,有助于建设功能相对完善的新型平台,从而为环境管理和社会公众提供更为高效、便捷的数字化服务,并对政府决策和预报预警提供更为及时的技术支撑和保障。  相似文献   
86.
2007年-2011年连续5年,采用生物群落法,对崂山水库浮游植物的群落结构进行了监测分析.结果为:2011年崂山水库共检出浮游植物8门93种,库区优势种为尖针杆藻(S.acus)、小胶鞘藻(P.tenue)、卵形隐藻(Cryptomonas ovata)、尖尾蓝隐藻(Chroomonas acuta).5年来群落结构相对稳定,浮游植物细胞密度呈上升趋势.库区为B-中污型水体.  相似文献   
87.
应用模糊数学法综合了5项主要污染指标评价了2008-2012年营口石门水库的水质级别,改变了仅凭单因子评价水质级别的方法,评价更合理,更符合实际情况。  相似文献   
88.
在多年废气固定污染源监测工作经验的基础上,对装置和设施的生产运行状态(即工况)影响固定污染源监测结果质量的因素进行了分析和总结,提出了相关的工况核查重点及方法。  相似文献   
89.
隔河岩水库二氧化碳通量时空变化及影响因素   总被引:2,自引:1,他引:1  
随着气候变化研究的深入,大型河流拦截工程对水域碳循环及温室气体交换的影响引起越来越多的关注.为了评估河流拦截工程对水域生态系统碳循环和二氧化碳交换通量时空分布模式的影响,选择清江隔河岩水库作为典型案例,采用在线分析仪与浮箱相结合的方法,在2015年3月至2016年2月期间开展了完整水文年连续观测实验,获取了水库坝前、上游、支流、消落带与库湾等典型区域二氧化碳通量数据.数据分析结果表明隔河岩水库水气界面二氧化碳平均通量为(55.691 8±66.332 9)mg·(m2·h)-1,呈现年内冬季高其他季节低的时间变化规律,空间上则表现为水库消落带坝前较低、典型库湾区域较高的分布格局.作为水库背景的库尾断面渔峡口区域二氧化碳通量季节变化非常稳定,在大部分时间内反而高于坝前和消落带断面的二氧化碳通量.数据分析表明二氧化碳通量时空分布格局受到水温、pH值和水体碳浓度的显著影响,但其相关程度受到季节和蓄水的双重影响.  相似文献   
90.
南水北调对密云水库水位变幅带土壤磷释放量的影响   总被引:1,自引:0,他引:1  
南水北调来水引起的水位上涨可能会导致密云水库水位变幅带土壤中磷的释放.过量的磷可能会引起水体富营养,因此,研究水库变幅带磷释放风险对密云水库水质安全保障具有科学指导意义.本研究采用连续浸提法测定密云水库变幅带土壤及沉积物中弱吸附态磷(NH_4ClP)、铁磷(BD-P)、铝磷(NaOH-P)及钙磷(HCl-P)等4种不同形态磷含量,探讨其分布特征;并在室内进行了磷释放模拟实验,估算了南水北调来水引起水库水位上升所致的易释放磷的释放量.结果表明,NH_4Cl-P、BD-P、NaOH-P、HCl-P广泛地分布于密云水库变幅带土壤及沉积物中.在白河、内湖及潮河3个库区,磷形态分布具有一致规律,即HCl-PNaOH-PBD-PNH_4Cl-P.因密云水库变幅带为中国典型的北方碱性土壤,变幅带无机磷主要为钙磷.NH_4Cl-P在3个库区变幅带土壤中含量相差不大,在受水动扰动力影响较小的内湖库区BD-P含量略高于其它2个库区.在3个不同库区中,潜在活性磷NH_4Cl-P和较稳定的NaOH-P在岸上和水陆交界面土壤及水下沉积物中含量相差不大,受氧化还原条件影响较大的BD-P在沉积物中的含量略高于岸上和水陆交界面土壤.磷释放模拟实验及释放量估算结果表明,水库水位上涨3 m的情况下,白河、潮河和内湖库区淹没变幅带土壤分别释放1.02、0.80、0.37 mg·m~(-2)易释放磷.白河和内湖库区变幅带被水淹没土壤中磷释放的风险可能更高,需加强防护.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号