首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   35篇
  国内免费   74篇
安全科学   17篇
废物处理   8篇
环保管理   190篇
综合类   149篇
基础理论   47篇
污染及防治   15篇
评价与监测   17篇
社会与环境   33篇
灾害及防治   5篇
  2024年   2篇
  2023年   8篇
  2022年   13篇
  2021年   13篇
  2020年   13篇
  2019年   9篇
  2018年   14篇
  2017年   11篇
  2016年   15篇
  2015年   23篇
  2014年   19篇
  2013年   26篇
  2012年   20篇
  2011年   24篇
  2010年   27篇
  2009年   21篇
  2008年   28篇
  2007年   20篇
  2006年   34篇
  2005年   14篇
  2004年   14篇
  2003年   11篇
  2002年   13篇
  2001年   18篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   6篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1973年   1篇
排序方式: 共有481条查询结果,搜索用时 15 毫秒
181.
Postfire Logging in Riparian Areas   总被引:2,自引:0,他引:2  
Abstract:  We reviewed the behavior of wildfire in riparian zones, primarily in the western United States, and the potential ecological consequences of postfire logging. Fire behavior in riparian zones is complex, but many aquatic and riparian organisms exhibit a suite of adaptations that allow relatively rapid recovery after fire. Unless constrained by other factors, fish tend to rebound relatively quickly, usually within a decade after a wildfire. Additionally, fire and subsequent erosion events contribute wood and coarse sediment that can create and maintain productive aquatic habitats over time. The potential effects of postfire logging in riparian areas depend on the landscape context and disturbance history of a site; however, available evidence suggests two key management implications: (1) fire in riparian areas creates conditions that may not require intervention to sustain the long-term productivity of the aquatic network and (2) protection of burned riparian areas gives priority to what is left rather than what is removed. Research is needed to determine how postfire logging in riparian areas has affected the spread of invasive species and the vulnerability of upland forests to insect and disease outbreaks and how postfire logging will affect the frequency and behavior of future fires. The effectiveness of using postfire logging to restore desired riparian structure and function is therefore unproven, but such projects are gaining interest with the departure of forest conditions from those that existed prior to timber harvest, fire suppression, and climate change. In the absence of reliable information about the potential consequence of postfire timber harvest, we conclude that providing postfire riparian zones with the same environmental protections they received before they burned is justified ecologically. Without a commitment to monitor management experiments, the effects of postfire riparian logging will remain unknown and highly contentious.  相似文献   
182.
Integrating wetlands and riparian zones in river basin modelling   总被引:1,自引:0,他引:1  
Wetlands, and in particular riparian wetlands, represent an interface between the catchment area and the aquatic environment. They control the exchange of water and related chemical fluxes from the upper catchment area to surface waters like streams and lakes. Their influence on water and nutrient balances has been investigated mainly at the patch scale. In this study an attempt was made (a) to integrate riparian zones and wetlands into eco-hydrological river basin modelling, and (b) to quantify the impacts of riparian wetland processes on water and nutrient fluxes in a meso-scale catchment located in the northeastern German lowland. The investigation was performed by analysing hydro-chemical field data and applying the eco-hydrological model SWIM (Soil and Water Integrated Model), which was extended to reproduce the relevant water and nutrient flows and retention processes at the catchment scale in general, and in riparian zones and wetlands in particular. The main extensions introduced in the model were: (1) implementation of daily groundwater table dynamics at the hydrotope level, (2) implementation of water and nutrient uptake by plants from groundwater in riparian zones and wetlands, and (3) assessment of nutrient retention in groundwater and interflow. The simulation results indicate that wetlands, though they represent relatively small parts of the total catchment area, may have a significant impact on the overall water and nutrient balances of the catchment. The uncertainty of the simulation results is considerably high, with the main sources of uncertainty being the model parameters representing the geo-hydrology and the input data for land use management.  相似文献   
183.
南麂列岛潮间带底栖藻类与环境的关系探讨   总被引:12,自引:0,他引:12  
根据南麂列岛的国胜岙,大沙岙和上马鞍等3条潮间带的底栖藻类监测结果,结合同区域的水质及底质环境质量,初步评价了该3个区栖藻类的生态种群,密度,形状及季节变化与环境质量之间的关系。  相似文献   
184.
Fluvial geomorphology provides the basis for characterizing complex river networks and evaluating biophysical processes within watersheds. Understanding the spatial organization of morphological features, their influencing processes, and resultant geomorphic diversity in stream networks are important for efficient restoration, river health assessment, and improving our knowledge of the resilience of riverine landscapes. River characterization is a means to determine the biophysical character of river networks but many methods are fraught with pitfalls, such as the use of incorrect variables and limited acknowledgment of the hierarchical organization of rivers. In this paper, a top‐down geographic information system‐based approach for determining the physical typology of river networks is outlined. A suite of multivariate analyses are used to develop a nomenclature for functional process zones (FPZs) — large tracts of the river network with similar hydro‐geomorphological character. Applied to the Little Miami River, Ohio, six distinct FPZs emerged, which had a nonuniform distribution along the river network. Some FPZs repeated downstream; others were rare in terms of total length and number of FPZ segments. The physical structure of the Little Miami River network was analyzed using a series of community metrics. Application of this approach for river monitoring, establishing reference conditions, as well as management of threatened and endangered species and asset trading is highlighted.  相似文献   
185.
Riparian forests attenuate solar radiation, thereby mediating an important component of the thermal budget of streams. Here, we investigate the relationship between riparian degradation, stream temperature, and channel width in the Chehalis River Basin, Washington State. We used lidar data to measure canopy opening angle, the angle formed between the channel center and trees on both banks; we assumed historical tree heights and calculated the change in canopy angle relative to historical conditions. We then developed an empirical relationship between canopy angle and water temperature using existing data, and simulated temperatures between 2002 and 2080 by combining a tree growth model with climate change scenarios from the NorWeST regional prediction. The greatest change between historical and current conditions (~7°C) occurred in developed portions of the river network, with the highest values of change predicted at channel widths less than ~40 m. Tree growth lessened climate change increases in maximum temperature and the length of river exceeding biologically critical thresholds by ~50%–60%. Moreover, the maximum temperature of channels with bankfull widths less than ~50 m remained similar to current conditions, despite climate change increases. Our findings are consistent with a possible role for the riparian landscape in explaining the low sensitivity of stream temperatures to air temperatures observed in some small mountain streams.  相似文献   
186.
Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) briefly review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field‐based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity.  相似文献   
187.
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings.  相似文献   
188.
This paper investigates the effect of low emission zones on air quality and birth outcomes in Germany. The staggered introduction of the policy measure creates a credible natural experiment and a natural control group for births and air pollution measurements in cities that enact low emission zones. I show that the introduction of the most restrictive type of low emission zone decreases average levels of fine particulate matter by about 4 percent and by up to 8 percent at a city's highest-polluting monitor. Low emission zones also reduce the number of days per year on which legal pollution limits are exceeded by three. However, these reductions are too small to translate into substantial improvements in infant health. My results are not driven by changes in maternal or city specific characteristics, and are robust to variations in specification and to the choice of control group.  相似文献   
189.
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers.  相似文献   
190.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号