全文获取类型
收费全文 | 700篇 |
免费 | 94篇 |
国内免费 | 242篇 |
专业分类
安全科学 | 7篇 |
废物处理 | 5篇 |
环保管理 | 372篇 |
综合类 | 389篇 |
基础理论 | 118篇 |
污染及防治 | 53篇 |
评价与监测 | 53篇 |
社会与环境 | 35篇 |
灾害及防治 | 4篇 |
出版年
2024年 | 12篇 |
2023年 | 22篇 |
2022年 | 26篇 |
2021年 | 27篇 |
2020年 | 31篇 |
2019年 | 37篇 |
2018年 | 32篇 |
2017年 | 38篇 |
2016年 | 51篇 |
2015年 | 51篇 |
2014年 | 49篇 |
2013年 | 66篇 |
2012年 | 62篇 |
2011年 | 64篇 |
2010年 | 58篇 |
2009年 | 50篇 |
2008年 | 33篇 |
2007年 | 47篇 |
2006年 | 43篇 |
2005年 | 33篇 |
2004年 | 21篇 |
2003年 | 17篇 |
2002年 | 20篇 |
2001年 | 17篇 |
2000年 | 19篇 |
1999年 | 10篇 |
1998年 | 9篇 |
1997年 | 12篇 |
1996年 | 9篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 5篇 |
1992年 | 6篇 |
1990年 | 7篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 4篇 |
1982年 | 3篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
排序方式: 共有1036条查询结果,搜索用时 5 毫秒
411.
Charles C. Morris Paul M. Stewart Thomas P. Simon 《Journal of the American Water Resources Association》2007,43(2):295-307
Abstract: This study evaluated biological integrity expectations of fish assemblages in wadeable streams for the Alabama portion of the Choctawhatchee River watershed using a multimetric approach. Thirty‐four randomly selected stream sites were sampled in late spring 2001 to calibrate an index of biotic integrity (IBI). Validation data were collected during the spring 2001, and summer and fall of 2003 from disturbed and least‐impacted targeted sites (n = 20). Thirty‐five candidate metrics were evaluated for their responsiveness to environmental degradation. Twelve metrics were selected to evaluate wadeable streams and four replacement metrics were selected for headwater streams. Scores that ranged from 58 to 60 were considered to be representative of excellent biotic integrity (none found in this study), scores of 48‐52 as good integrity (31% of the sites in this study), 40‐44 as fair (43%), 28‐34 as poor (21%), and 12‐22 as very poor (5%). Of the four stream condition categories (urban, cattle, row crop, and least impacted), the IBI scores for urban and cattle sites differed significantly from least‐impacted sites. Row crop sites, although not significantly different from least‐impacted, tended to have greater variability than the other categories. Lower IBI scores at both urban and cattle sites suggest that the IBI accurately reflects stream impairment in the Choctawhatchee River drainage. 相似文献
412.
Amanda H. Bell Barbara C. Scudder 《Journal of the American Water Resources Association》2007,43(4):957-968
Abstract: In 2003, the U.S. Geological Survey (USGS) National Water‐Quality Assessment (NAWQA) program and U.S. Environmental Protection Agency studied total mercury (THg) and methylmercury (MeHg) concentrations in periphyton at eight rivers in the United States in coordination with a larger USGS study on mercury cycling in rivers. Periphyton samples were collected using trace element clean techniques and NAWQA sampling protocols in spring and fall from targeted habitats (streambed surface‐sediment, cobble, or woody snags) at each river site. A positive correlation was observed between concentrations of THg and MeHg in periphyton (r2 = 0.88, in log‐log space). Mean MeHg and THg concentrations in surface‐sediment periphyton were significantly higher (1,333 ng/m2 for MeHg and 53,980 ng/m2 for THg) than cobble (64 ng/m2 for MeHg and 1,192 ng/m2 for THg) or woody snag (71 ng/m2 for MeHg and 1,089 ng/m2 for THg) periphyton. Concentrations of THg in surface‐sediment periphyton had a strong positive correlation with concentrations of THg in sediment (dry weight). The ratio of MeHg:THg in surface‐sediment periphyton increased with the ratio of MeHg:THg in sediment. These data suggest periphyton may play a key role in mercury bioaccumulation in river ecosystems. 相似文献
413.
D. R. Edwards B. T. Larson T T Lim 《Journal of the American Water Resources Association》2000,36(4):711-721
ABSTRACT: Grazed pastures represent a potential source of non‐point pollution. In comparison to other nonpoint sources (e.g., row‐cropped lands), relatively little information exists regarding possible magnitudes of pollution from grazed pasture; how that pollution is affected by weather, soil, management and other variables; and how the pollution can be minimized. The objective of this study was to assess how the quality of runoff from fescue plots is influenced by duration of cattle manure application (4–12 weeks) and manure application strategy (none, weekly application of 1.4 kg/plot, and monthly application at 5.6 kg/plot). Additional analyses were performed to relate runoff quality to the timing of sample collection. The study was conducted at the University of Kentucky Maine Chance Agricultural Experiment Station north of Lexington. Plots (2.4 m wide by 6.1 m long) were constructed and established in Kentucky 31 fescue (Festuca arundinacea Schreb.) to represent pasture. Grazing was simulated by application of beef cattle manure to the plots. Runoff was generated by applying simulated rainfall approximately 4, S and 12 weeks following initiation of manure application. Runoff samples were collected and analyzed according to standard methods for nitrogen (N), phosphorus (P) and fecal coliforms (FC). Runoff concentrations of N and P from manure‐treated plots were low and generally not consistently different from control plot concentrations or related to manure application strategy. Runoff FC concentrations from manure‐treated plots were higher than from control plot concentrations. Runoff concentrations of ammonia N, total Kjeldahl N, ortho‐P and FC decreased approximately exponentially in response to increasing time of sample collection. These findings suggest that manure deposition on well‐managed pasture at the rates used in this study might have a negligible impact on nutrient content of runoff. 相似文献
414.
D. R. Edwards T. K. Hutchens R. W. Rhodes B. T. Larson L. Dunn 《Journal of the American Water Resources Association》2000,36(5):1063-1073
ABSTRACT: Grazed pastures represent a potential source of non‐point pollution. In comparison to other nonpoint sources (e.g., row‐cropped lands), relatively little information exists regarding possible magnitudes of nutrient losses from grazed pasture, how those losses are affected by management variables, and how the losses can be minimized. The objective of this study was to measure concentrations of nitrogen (N), phosphorus (P), and solids in runoff from fescue plots and relate those measurements to simulated forage management strategy. The study was conducted at the University of Kentucky Maine Chance Agricultural Experiment Station north of Lexington. Plots (2.4 m wide by 6.1 m long) were constructed and established in Kentucky 31 fescue (Festuca arundinacea Schreb.) to represent pasture. The experimental treatments applied to the plots varied in terms of forage height and material applied (none, manure, or manure and urine). Runoff was sampled for six simulated rainfall events applied over the summer of 1997 and analyzed for nitrate N (NO3‐N), ammonia N (NH3‐N), total Kjeldahl N (TKN), ortho‐P (PO4‐P), total P (TP), and total suspended solids (TSS). All runoff constituents exhibited dependence on the date of simulated rainfall with generally higher concentrations measured when simulated rainfall followed relatively dry periods. The effects of forage height and manure addition were mixed. Highest runoff N concentrations were associated with the greatest forage heights, whereas highest P concentrations occurred for the least forage heights. Manure/urine addition increased runoff P concentrations relative to controls (no manure/urine) for both the greatest and least forage heights, but runoff N concentrations were increased only for the greatest forage heights. These findings indicate that runoff of N and P is at least as sensitive to amount and proximity of preceding rainfall and suggest that managing forage to stimulate growth and plant uptake can reduce runoff of N. 相似文献
415.
Jason M. Zink Gregory D. Jennings G. Alexander Price 《Journal of the American Water Resources Association》2012,48(4):762-773
Zink, Jason M., Gregory D. Jennings, and G. Alexander Price, 2012. Morphology Characteristics of Southern Appalachian Wilderness Streams. Journal of the American Water Resources Association (JAWRA) 48(4): 762‐773. DOI: 10.1111/j.1752‐1688.2012.00647.x Abstract: Watersheds without urbanization or impacts from logging are rare in the southern Appalachian Mountains. The Joyce Kilmer/Slickrock Wilderness of North Carolina and Tennessee contains 24 km2 of old‐growth forest, with the balance of the wilderness in a mature second‐growth forest. The watersheds of Little Santeetlah and Slickrock Creek are located within the wilderness. Morphological information, including channel dimensions and longitudinal profiles, was gathered from 14 alluvial stream reaches in these watersheds. The study sites had drainage areas from 0.25 to 41.6 km2 and stream slopes from 0.014 to 0.104 m/m. Bankfull cross‐section dimensions of the study stream reaches were strongly correlated to drainage area across the observed range of slopes and bed morphology. Cross‐section area and width relationships for the streams in this study did not differ significantly from regional curves for the mountain physiographic region of North Carolina. Observations of these reaches did not suggest a definitive rule regarding the proportion of steps and riffles in streams. Pools occupied greater than 50% of the length in all stream reaches with slopes less than 0.07 m/m. Significant correlation existed between step height ratio and slope, suggesting that step height can be approximated as the product of channel width and slope. Riffle length and riffle slope ratios were also significantly correlated with slope, though pool spacing was not. 相似文献
416.
G. L. Rolfe M. A. Akhtar L. E. Arnold 《Journal of the American Water Resources Association》1978,14(5):1220-1226
ABSTRACT: Nutrient fluxes in precipitation, throughfall, and stemflow were studied in an oak-hickory forest in southern Illinois for a three-year period beginning in 1973. Nutrient inputs in these water related pathways were approximately one-half those of litterfall; a major nutrient return mechanism. Considering these water carried nutrients (116 kg/ha/yr), 38% was contributed by precipitation, 35% by throughfall and approximately 27% by stemflow. Although the total nutrient input is only one-half that of litterfall, the net impact on short-term nutrient requirements is considerable because of their immediate availability. Nutrient inputs in litter represent a delayed return mechanism because of the relatively slow decomposition process. 相似文献
417.
S. J. Kalkhoff M. G. Detroy K. L. Cherryholmes R. L. Kuzniar 《Journal of the American Water Resources Association》1992,28(6):1001-1011
ABSTRACT: A hydrologic investigation to determine vertical and seasonal variation of atrazine, alachlor, cyanazine, and nitrate at one location and to relate the variation to ground-water movement in the Iowa River alluvium was conducted in Iowa County, Iowa, from March 1986 to December 1987. Water samples were collected at discrete intervals through the alluvial sequence from the soil zone to the base of the aquifer. Alachlor, atrazine, and cyanazine were detected most frequently in the soil zone but also were present in the upper part of the alluvial aquifer. Alachlor was detected sporadically, whereas, atrazine, cyanazine, and nitrate were present throughout the year. In the alluvial aquifer, the herbicides generally were not detected during 1986 and were present in detectable concentrations for only a short period of time in the upper 1.6 meters of the aquifer during 1987. Nitrate was present throughout the alluvium and was stratified in the alluvial aquifer. The largest nitrate concentrations were detected in the middle part of the aquifer. Nitrate concentrations were variable only in the upper 2 meters of the aquifer. Vertical movement of herbicides and nitrate in the soil correlated with precipitation and degree of saturation. A clay layer retarded vertical movement of atrazine but not nitrate from the soil layer to the aquifer. Vertical movement could not account for the chemical variation in the alluvial aquifer. 相似文献
418.
Maeve McBride Derek B. Booth 《Journal of the American Water Resources Association》2005,41(3):565-580
ABSTRACT: An assessment of physical conditions in urban streams of the Puget Sound region, coupled with spatially explicit watershed characterizations, demonstrates the importance of spatial scale, drainage network connectivity, and longitudinal downstream trends when considering the effects of urbanization on streams. A rapid stream assessment technique and a multimetric index were used to describe the physical conditions of multiple reaches in four watersheds. Watersheds were characterized using geographic information system (GIS) derived landscape metrics that represent the magnitude of urbanization at three spatial scales and the connectivity of urban land. Physical conditions, as measured by the physical stream conditions index (PSCI), were best explained for the watersheds by two landscape metrics: quantity of intense and grassy urban land in the subwatershed and quantity of intense and grassy urban land within 500 m of the site (R2= 0.52, p > 0.0005). A multiple regression of PSCI with these metrics and an additional connectivity metric (proximity of a road crossing) provided the best model for the three urban watersheds (R2= 0.41, p > 0.0005). Analyses of longitudinal trends in PSCI within the three urban watersheds showed that conditions improved when a stream flowed through an intact riparian buffer with forest or wetland vegetation and without road crossings. Results demonstrate that information on spatial scale and patterns of urbanization is essential to understanding and successfully managing urban streams. 相似文献
419.
Kati L. White Indrajeet Chaubey 《Journal of the American Water Resources Association》2005,41(5):1077-1089
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals. 相似文献
420.
Kyoung Jae Lim Bernard A. Engel Zhenxu Tang Joongdae Choi Ki‐Sung Kim Suresh Muthukrishnan Dibyajyoti Tripathy 《Journal of the American Water Resources Association》2005,41(6):1407-1416
The separation of the base flow component from a varying streamflow hydrograph is called “hydrograph analysis.” In this study, two digital filter based separation modules, the BFLOW and Eckhardt filters, were incorporated into the Web based Hydrograph Analysis Tool (WHAT) system. A statistical component was also developed to provide fundamental information for flow frequency analysis and time series analysis. The Web Geographic Information System (GIS) version of the WHAT system accesses and uses U.S. Geological Survey (USGS) daily streamflow data from the USGS web server. The results from the Eckhardt filter method were compared with the results from the BFLOW filter method that was previously validated, since measured base flow data were not available for this study. Following validation, the two digital filter methods in the WHAT system were run for 50 Indiana gaging stations. The Nash‐Sutcliffe coefficient values comparing the results of the two digital filter methods were over 0.91 for all 50 gaging stations, suggesting the filtered base flow using the Eckhardt filter method will typically match measured base flow. Manual separation of base flow from streamflow can lead to inconsistency in the results, while the WHAT system provides consistent results in less than a minute. Although base flow separation algorithms in the WHAT system cannot consider reservoir release and snowmelt that can affect stream hydrographs, the Web based WHAT system provides an efficient tool for hydrologic model calibration and validation. The base flow information from the WHAT system can also play an important role for sustainable ground water and surface water exploitation, including irrigation and industrial uses, and estimation of pollutant loading from both base flow and direct runoff. Thus, best management practices can be appropriately applied to reduce and intercept pollutant leaching if base flow contributes significant amounts of pollutants to the stream. This Web GIS based system also demonstrates how remote, distributed resources can be shared through the Internet using Web programming. 相似文献