Objective: The shape of the current physical and computational surrogates of children used for restraint system assessments is based largely on standard anthropometric dimensions. These scalar dimensions provide valuable information on the overall size of the individual but do not provide good guidance on shape or posture. This study introduced the development of a parametric model that statistically predicts individual child body shapes in seated postures with a few given parameters.
Methods: Surface geometry data from a laser scanner of children ages 3 to 11 (n = 135) were standardized by a 2-level fitting method using intermediate templates. The standardized data were analyzed by principal component analysis (PCA) to efficiently describe the body shape variance. Parameters such as stature, body mass index, erect sitting height, and 2 posture variables related to torso recline and lumbar spine flexion were associated with the PCA model using regression.
Results: When the original scan data were compared with the predictions of the model using the given subject dimensions, the average root mean square error for the torso was 9.5 mm, and the 95th percentile error was 17.35 mm.
Conclusions: For the first time, a statistical model of child body shapes in seated postures is available. This parametric model allows the generation of an infinite number of virtual children spanning a wide range of body sizes and postures. The results have broad applicability in product design and safety analysis. Future work is needed to improve the representation of hands and feet and to extend the age range of the model. The model presented in this article is publicly available online through HumanShape.org. 相似文献
To verify the effectiveness of a new automatic sorting technique that combines a weight meter and a laser 3D shape-detection system, elemental analysis of lightweight metal scraps generated in end-of-life vehicle (ELV) shredder facilities was conducted using a handheld XRF analyzer. According to their 3D shape and chemical composition, aluminum scraps were classified into cast alloy (Alc) and wrought alloy (Alw) fragments, and magnesium scraps were classified into irregularly shaped and rod-like fragments. The average chemical composition of a group of fragments was estimated before and after the separation test using the developed automatic sorting technique. The results show that the production of wrought aluminum alloy from the mixture of Alc and Alw fragments is not realistic because the contents of some alloying elements greatly exceed the standard values, although these alloying elements greatly decrease after the Alc fragments are separated out. For the magnesium scraps, after the rod-like magnesium fragments originating from the steering column were separated from the irregularly shaped fragments, the average chemical compositions of the rod-like products and the irregularly shaped products clearly approached the standard compositions of AM60B and AZ91D alloys, respectively. Thus, it was confirmed that the developed automatic sorting technique contributes to recycling of lightweight metal scrap in the automobile industry. 相似文献
Cheng, Shin-jen, 2010. Inferring Hydrograph Components From Rainfall and Streamflow Records Using a Kriging Method-Based Linear Cascade Reservoir Model. Journal of the American Water Resources Association (JAWRA) 46(6):1171–1191. DOI: 10.1111/j.1752-1688.2010.00484.x Abstract: This study investigates the characteristics of hydrograph components in a Taiwan watershed to determine their shapes based on observations. Hydrographs were modeled by a conceptual model of three linear cascade reservoirs. Mean rainfall was calculated using the block Kriging method. The optimal parameters for 42 events from 1966-2008 were calibrated using an optimal algorithm. Rationality of generated runoffs was well compared with a trusty model. Model efficacy was verified using seven averaged parameters with 25 other events. Hydrograph components were characterized based on 42 calibration results. The following conclusions were obtained: (1) except for multipeak storms, a correlation between base time of the surface runoff and soil antecedent moisture is a decreasing power relationship; (2) a correlation between time lag of the surface flow and soil antecedent moisture for single-peak storms is an increasing power relationship; (3) for single-peak events, times to peak of hydrograph components are an increasing power correlation corresponding to the peak time of rainfall; (4) the peak flows of hydrograph components are linearly proportional to that of total runoff, and the peak ratio for the surface runoff to total runoff is approximately 78 and 13% for subsurface runoff to total runoff; and (5) the relationships of total discharges have direct ratios between hydrograph components and observations of total runoffs, and a surface runoff is 60 and 32% for a subsurface runoff. 相似文献