首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   36篇
  国内免费   59篇
安全科学   8篇
废物处理   14篇
环保管理   274篇
综合类   101篇
基础理论   32篇
污染及防治   11篇
评价与监测   23篇
社会与环境   11篇
灾害及防治   4篇
  2023年   4篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   14篇
  2018年   7篇
  2017年   14篇
  2016年   18篇
  2015年   18篇
  2014年   18篇
  2013年   14篇
  2012年   14篇
  2011年   16篇
  2010年   7篇
  2009年   18篇
  2008年   15篇
  2007年   17篇
  2006年   34篇
  2005年   13篇
  2004年   21篇
  2003年   30篇
  2002年   26篇
  2001年   19篇
  2000年   10篇
  1999年   3篇
  1998年   13篇
  1997年   14篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
排序方式: 共有478条查询结果,搜索用时 15 毫秒
11.
ABSTRACT: Bankfull depth and discharge are basic input parameters to stream planform, stream restoration, and highway crossing designs, as well as to the development of hydraulic geometry relationships and the classification of streams. Unfortunately, there are a wide variety of definitions for bankfull that provide a range of values, and the actual selection of bankfull is subjective. In this paper, the relative uncertainty in determining the bankfull depth and discharge is quantified, first by examining the variability in the estimates of bankfull and second by using fuzzy numbers to describe bankfull depth. Fuzzy numbers are used to incorporate uncertainty due to vagueness in the definition of bankfull and subjectivity in the selection of bankfull. Examples are provided that demonstrate the use of a fuzzy bankfull depth in sediment trans. port and in stream classification. Using fuzzy numbers to describe bankfull depth rather than a deterministic value allows the engineer to base designs and decisions on a range of possible values and associated degrees of belief that the bankfull depths take on each value in that range.  相似文献   
12.
ABSTRACT: The objective of this study was to examine the chemistry of Coalbed Methane (CBM) discharge water reacting with semi‐arid ephemeral stream channels in the Powder River Basin, Wyoming. The study area consisted of two ephemeral streams: Burger Draw and Sue Draw. These streams are tributaries to the perennial Powder River. Samples were collected bimonthly from three CBM discharge points and seven channel locations in Burger Draw and Sue Draw. Samples were also collected bimonthly from the Powder River above and below the confluence of Burger Draw. Before sample collection, the pH and electrical conductivity (EC) were measured in the field. Samples were transported to the laboratory and analyzed for alkalinity, major cations, and anions. From the measurement of sodium (Na), calcium (Ca), and magnesium (Mg), practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated. Results suggest pH and EC of CBM discharge water was 7.1 and 4.3 dS/m, respectively. The CBM discharge water consisted of higher concentrations of sodium and alkalinity compared to other components. The pH of CBM discharge water increased significantly (p = 0.000) in the downstream channel of Burger Draw from 7.1 to 8.84 before it joined with the Powder River. Dissolved calcium concentration of CBM discharge water decreased significantly (p = 0.000) in the downstream channel water. Subsequently, SARp increased approximately from 24 to 29. The SARt also increased significantly (p = 0.001) in the downstream channel water. For instance, SARt of CBM discharge water increased from 32.93 to 45.5 downstream channels after the confluence of Sue Draw with the Burger Draw. The only significant difference in water chemistry above and below the confluence of Burger Draw with the Powder River was pH, which increased from 8.36 to 8.52. The significant increase in SAR values of CBM discharge water in Burger Draw and Sue Draw tributaries suggest a careful monitoring of salinity and sodicity is needed if CBM discharge water is used for irrigation in semi‐arid environments. Results discussed in this study will be useful to downstream water users who depend on water for irrigation.  相似文献   
13.
ABSTRACT: Increasing demands on western water are causing a mounting need for the conjunctive management of surface water and ground water resources. Under western water law, the senior water rights holder has priority over the junior water rights holder in times of water shortage. Water managers have been reluctant to conjunctively manage surface water and ground water resources because of the difficulty of quantification of the impacts to surface water resources from ground water stresses. Impacts from ground water use can take years to propagate through an aquifer system. Prediction of the degree of impact to surface water resources over time and the spatial distribution of impacts is very difficult. Response functions mathematically describe the relationship between a unit ground water stress applied at a specific location and stream depletion or aquifer water level change elsewhere in the system. Response functions can be used to help quantify the spatial and temporal impacts to surface water resources caused by ground water pumping. This paper describes the theory of response functions and presents an application of transient response functions in the Snake River Plain, Idaho. Transient response functions can be used to facilitate the conjunctive management of surface and ground water not only in the eastern Snake River Plain basin, but also in similar basins throughout the western United States.  相似文献   
14.
The solution chemistry of forested streams primarily in western North America is explained by considering the major factors that influence this chemistry — geological weathering; atmospheric precipitation and climate; precipitation acidity; terrestrial biological processes; physical/chemical reactions in the soil; and physical, chemical, and biological processes within streams. Due to the complexity of all these processes and their varying importance for different chemicals, stream water chemistry has exhibited considerable geographic and temporal variation and is difficult to model accurately. The impacts of forest harvesting on stream water chemistry were reviewed by considering the effects of harvesting on each of the important factors controlling this chemistry, as well as other factors influencing these impacts ‐ extent of the watershed harvested, presence of buffer strips between streams and harvested areas, nature of post‐harvesting site preparation, revegetation rate following harvesting, pre‐harvesting soil fertility, and soil buffering capacity. These effects have sometimes reinforced one another but have sometimes been counterbalancing or slight so that harvesting impacts on stream water chemistry have been highly variable. Eight major knowledge gaps were identified, two of which — a scarcity of detailed stream chemical budgets and knowledge of longitudinal variation in stream chemistry — relate to undisturbed streams, while the remainder relate to forest harvesting effects.  相似文献   
15.
In Latin America and the Caribbean, river restoration projects are increasing, but many lack strategic planning and monitoring. We tested the applicability of a rapid visual social–ecological stream assessment method for restoration planning, complemented by a citizen survey on perceptions and uses of blue and green infrastructure. We applied the method at three urban streams in Jarabacoa (Dominican Republic) to identify and prioritize preferred areas for nature-based solutions. The method provides spatially explicit information for strategic river restoration planning, and its efficiency makes it suitable for use in data-poor contexts. It identifies well-preserved, moderately altered, and critically impaired areas regarding their hydromorphological and socio-cultural conditions, as well as demands on green and blue infrastructure. The transferability of the method can be improved by defining reference states for assessing the hydromorphology of tropical rivers, refining socio-cultural parameters to better address river services and widespread urban challenges, and balancing trade-offs between ecological and social restoration goals.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01565-3.  相似文献   
16.
A portion of Arizona’s San Pedro River is managed as a National Riparian Conservation Area but is potentially affected by ground-water withdrawals beyond the conservation area borders. We applied an assessment model to the Conservation Area as a basis for monitoring long-term changes in riparian ecosystem condition resulting from changes in river water availability, and collected multi-year data on a subset of the most sensitive bioindicators. The assessment model is based on nine vegetation bioindicators that are sensitive to changes in surface water or ground water. Site index scores allow for placement into one of three condition classes, each reflecting particular ranges for site hydrology and vegetation structure. We collected the bioindicator data at 26 sites distributed among 14 reaches that had similar stream flow hydrology (spatial flow intermittency) and geomorphology (channel sinuosity, flood-plain width). Overall, 39% of the riparian corridor fell within condition class 3 (the wettest condition), 55% in condition class 2, and 6% in the driest condition class. Condition class 3 reaches have high cover of herbaceous wetland plants (e.g., Juncus and Schoenoplectus spp.) along the perennial stream channel and dense, multi-aged Populus-Salix woodlands in the flood plain, sustained by shallow ground water in the stream alluvium. In condition class 2, intermittent stream flows result in low cover of streamside wetland herbs, but Populus-Salix remain abundant in the flood plain. Perennial wetland plants are absent from condition class 1, reflecting highly intermittent stream flows; the flood plain is vegetated by Tamarixa small tree that tolerates the deep and fluctuating ground water levels that typify this reach type. Abundance of herbaceous wetland plants and growth rate of Salix gooddingii varied between years with different stream flow rates, indicating utility of these measures for tracking short-term responses to hydrologic change. Repeat measurement of all bioindicators will indicate long-term trends in hydro-vegetational condition.  相似文献   
17.
巢湖流域河流鱼类群落的时空分布   总被引:2,自引:0,他引:2  
基于2013年4月和10月对巢湖流域66个河道样点的调查数据,初步研究了巢湖流域河流鱼类群落的时空变化特征。主要研究结果显示,鱼类多样性无显著性的水系间、生态分区间的变化,但随季节和河流级别显著变化:10月份的个体数显著高于4月份,2级河流的物种数和个体数均显著大于1级、3级和4级河流。鱼类群落结构的季节动态显著,随生态分区显著变化,但不受水系、河流级别的显著影响。在二级生态分区水平上,仅西南森林生态亚区的鱼类群落结构与其他5个生态亚区的显著差异;宽鳍鱲、吻虾虎鱼等在西南森林生态亚区具有更高多度,而鲫、鰐、鲤等物种在其他生态亚区多度更高。  相似文献   
18.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   
19.
The objective of this study was to assess the effects of dredging on the structure and composition of diatom assemblages from a lowland stream and to investigate whether the response of diatom assemblages to the dredging is also influenced by different water quality. Three sampling sites were established in Rodríguez Stream (Argentina); physico-chemical variables and benthic diatom assemblages were sampled weekly in spring 2001. Species composition, cell density, diversity and evenness were estimated. Diatom tolerance to organic pollution and eutrophication were also analyzed. Differences in physico-chemical variables and changes in benthic diatom assemblages were compared between the pre- and post-dredging periods using a t-test. Data were analyzed using Principal Components Analysis (PCA), non-metric multidimensional scaling (MDS) ordination and cluster analysis. The effects of dredging in the stream involve two types of disturbances: (i) in the stream bed, by the removal and destabilization of the substrate and (ii) in the water column, by generating chemical changes and an alteration of the light environment of the stream. Suspended solids, soluble reactive phosphorus and dissolved inorganic nitrogen were significantly higher in post-dredging periods. Physical and chemical modifications in the habitat of benthic diatoms produced changes in the assemblage; diversity and species numbers showed an immediate increase after dredging, decreasing at the end of the study period. Changes in the tolerance of the diatom assemblage to organic pollution and eutrophication were also observed as a consequence of dredging; in the post-dredging period sensitive species were replaced by either tolerant or most tolerant species. These changes were particularly noticeable in site 1 (characterized by its lower amount of nutrients and organic matter previous to dredging), which showed an increase in the amount of nutrients and oxygen demand as a consequence of sediment removal. However, these changes were not so conspicuous in sites 2 and 3, which already presented a marked water quality deterioration before the execution of the dredging works.  相似文献   
20.
Abstract: Urbanization represents a strong and increasingly more prevalent impact on stream quality worldwide. One of the characteristic effects of increased urbanization is a consistent decline in biological stream condition. The characterization of this biological degradation with increasing urbanization presents a number of advantages for the study and management of urban streams and catchments. In this paper, the limitation of biological condition with urbanization, called observed biological potential, is characterized. Using an urban intensity index and a biological index developed specifically for urban systems in the Baltimore, Maryland; Cleveland, Ohio; and San Jose, California regions, two principal techniques were compared (quantile regression and bin regression) to define observed biological potential along urban gradients. Quantile regression was selected as the preferable tool for describing observed biological potential given the consistency with which it can be applied and its statistical efficiency, however, bin quantile regression performed similarly. Having identified a numeric approximation of observed biological potential, two methods for identifying factors related to distance from potential as a way of identifying critical environmental factors affecting biological condition in urban areas were explored. The results of this work can be used for identifying benchmarks for urban stream biological condition, identifying limiting catchment characteristics, and prioritizing urban stream management efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号