首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   33篇
  国内免费   9篇
安全科学   7篇
废物处理   1篇
环保管理   198篇
综合类   35篇
基础理论   20篇
污染及防治   4篇
评价与监测   4篇
社会与环境   6篇
  2023年   5篇
  2022年   2篇
  2021年   1篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   9篇
  2016年   10篇
  2015年   6篇
  2014年   12篇
  2013年   17篇
  2012年   10篇
  2011年   14篇
  2010年   6篇
  2009年   13篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有275条查询结果,搜索用时 31 毫秒
131.
The Truckee River heads in the Sierra Nevada at Lake Tahoe, and terminates in Pyramid Lake. During the 1969 water year, flow about 9 miles upstream from the mouth (974,000 acre-ft) was almost four times the long-term average, due mainly to heavy winter rains and spring snowmelt. A short period of low-altitude rainfall produced the highest concentrations of suspended sediment, whereas a much longer subsequent period of snowmelt yielded a much greater total quantity of material. The upper 90 percent of the basin yielded about 260 acre-feet (630,000 tons) of sediment at the Nixon gage, whereas an estimated 2,800 acre-feet (6.8 million tons) was contributed by erosion of about 200 acres of river bank below the gage. Solute content at the gage ranged from 80 to 450 mg/l, dominated by calcium, sodium, and bicarbonate, plus silica in the most dilute snowmelt and chloride in the most concentrated low flows. Solute load totaled about 130,000 tons, of which the principal constituents in Pyramid Lake-sodium plus equivalent bicarbonate and chloride-amounted to almost 40,000 tons. The total solute load during a year of average flow may be 45,000-55,000 tons, including 18,000-22,000 tons of principal lake constituents.  相似文献   
132.
ABSTRACT. In urban hydrologic studies, it is often necessary to determine the effect of changes in urban land use patterns on such runoff characteristics as flood peaks and flow volumes. Nonparametric statistical methods have certain properties that make them a valuable tool for detecting hydrologic change caused by a treatment, such as urbanization, that changes watershed over a period of time. As many hydrologists do not have a working familiarity with nonparametric methods, a number of them are used for illustrative purposes to analyze the effect of urbanization on 24 years of annual flood peaks for a Louisville, Kentucky, watershed. In the example, urbanization was found to increase the central tendency, but not the dispersion of the peaks. Peak flows modeled by holding watershed parameters constant were also found to be increasing because of an upward trend in precipitation. By following the numerical examples in the paper and looking up test statistics in referenced sources, the reader can easily apply these methods to other situations.  相似文献   
133.
ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow‐producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century.  相似文献   
134.
ABSTRACT: An analysis of hydrograph recessions and rainfall data was performed to estimate the recession constants for two watersheds in the Luquillo mountains of Puerto Rico. To account for seasonal rainfall patterns, the data were grouped into dry and wet seasons. Sets of three Master Recession Curves (MRC) per season for each watershed were developed: one using the Matching Strip Method (MS) and two using variations of the Correlation Method (CM). These variations were the envelope line (CME) and the least squares regression (CMR). Other regression based analytical expressions that consider the streamflow recession as an autore‐gressive or an integrated moving average process were also applied. The regression based methods performed consistently better than the graphical ones and they proved to be faster, easier, and less subjective. The recession constants from these methods were then used to estimate the time it would take the streamflow to reach the critical Q99 flow duration. Based on this study, once the streamflow reaches Q90, water managers have 6 to 12 days warning before streamflow reaches critical levels.  相似文献   
135.
ABSTRACT: Using a Geographic Information System (GIS), a method is presented to develop a spatially explicit time series of land use in an urbanizing watershed. The method is prefaced on the existence of independent observations of land use at different times and data that describes the spatial‐temporal land use transition characteristics of the watershed between these two points in time. A method is then presented to generalize the TR‐55 graphical method, a common lumped hydrologic model for estimating peak discharge, for use in a spatially explicit scheme. This scheme predicts peak discharge throughout a watershed, rather than at a single selected watershed outlet. Coupling these two methods allows the engineer to model both the temporal and spatial evolution of peak discharge for the watershed. An illustrative watershed in a suburban area of Washington, DC is selected to demonstrate the methods. The model results from these analyses are presented graphically to highlight the complex features in peak discharge behavior that exist both spatially, as a function of position within the watershed drainage network, and temporally, as the watershed undergoes urbanization. These features are not commonly noted in most hydrologic analyses but are captured in these analyses because of the high spatial and temporal resolution of the methods presented. The physical implications of the modeled results are discussed in the context of the information content of a stream gauge located at the overall outlet of the illustrative watershed. This work shows that the common practice of transposition of gauge information to locations internal to the watershed would neglect internal variability in peak discharge behavior, and could potentially lead to the determination of inappropriate design discharges.  相似文献   
136.
ABSTRACT: Ninety‐one sediment oxygen demand (SOD) samples from six designated sites along the stretch of Lower Rapid Creek, South Dakota, were conducted using an in‐situ SOD chamber. Inside the chamber, readings of dissolved oxygen (DO), water temperature, pH, and specific conductance were recorded every minute for more than one hour using the Datasonde 3 Hydrolab. Initial readings of such parameters were recorded for the overlaying water before the deployment of the SOD chamber. Characteristics of the stream conditions, air temperature, barometric pressure, average flow velocity of the stream, depth of the stream, and the flow velocity by the chamber were recorded. Single and multiple linear regression analyses on all parameters indicated that the velocity of the stream is the least critical parameter for SOD in shallow streams.  相似文献   
137.
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends.  相似文献   
138.
ABSTRACT: Drought is an interaction between physical processes and human activities. This study quantified the impacts of precipitation deficiencies on streamflow, reservoirs, and shallow ground water supplies. An in-depth analysis of newspaper accounts of droughts between paired cities, one in drought and one not in drought, were used to measure the differences in the types of drought impacts, and in the time of onset of impacts as related to developing precipitation deficiencies. Precipitation deficiencies related to the onset and the magnitude of surface water supply adjustments, and to shallow ground water problems, were established. Thus, monitoring and prediction of the onset and magnitude of drought problems can now be done from readily available data on precipitation deficiencies. Newspapers were found to be reliable indicators for the timing of drought impacts and adjustments as precipitation deficiency develops. A review of local and state adjustments during two recent droughts revealed most decision makers lacked information and experience in dealing with drought.  相似文献   
139.
ABSTRACT: The quantity, seasonality, and sources of flow were analyzed for two segments of Four Mile Branch, a small stream on the Coastal Plain of South Carolina using data obtained from USGS gauging stations. Flows in the “upstream segment,” a 12.6-km2 watershed comprising the head waters of Four Mile Branch, averaged 0.129 m3 s?1 and showed a distinctly seasonal pattern, with maximum flows in February and March and minimum flows in September and October. Inflow to the “downstream segment,” a 2.2-km2 watershed associated with the main channel, averaged 0.059 m3 s?1 and showed no seasonal patterns. Discharges per unit area of watershed were greater for the downstream segment, 0.83 m3 per year per m2 of land surface, than for the upstream segment, 0.32 m3 per year per m2. The differences in discharge rates and seasonalities between the two segments reflect differences in aquifers supplying the different segments. Analyses of Streamflow by hydrograph separation and Streamflow partitioning methods indicated that greater than 90 percent of the flows in the upstream and downstream segments were due to ground water-driven base flows.  相似文献   
140.
ABSTRACT: For a set of 81 catchments in southeast Victoria, Australia, predictive equations were developed by least squares regression of the mean and coefficient of variation of annual Streamflow against a variety of rainfall and physiographic parameters. The data were also divided into subsets according to catchment size, subregion, or record length of investigate if the relationships differed significantly between subsets. Only the catchment area and some rainfall statistical parameters were found to be significant. Streamflow parameters predicted by the regression equations were used to estimate storage requirements in ungauged catchments. The influence of errors in the Streamflow parameters on the storage error was examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号