首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   33篇
  国内免费   9篇
安全科学   7篇
废物处理   1篇
环保管理   198篇
综合类   35篇
基础理论   20篇
污染及防治   4篇
评价与监测   4篇
社会与环境   6篇
  2023年   5篇
  2022年   2篇
  2021年   1篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   9篇
  2016年   10篇
  2015年   6篇
  2014年   12篇
  2013年   17篇
  2012年   10篇
  2011年   14篇
  2010年   6篇
  2009年   13篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有275条查询结果,搜索用时 343 毫秒
31.
ABSTRACT: Flow-duration curves are concise pictures of flow variability at a point on a stream, and provide essential information for all water-resource planning. In New Hampshire, useful estimates of flow-duration curves for ungaged points on unregulated streams can be made using only information readily available from contour maps: 1) area of the basin above the point of interest; and 2) either the measured mean basin elevation or the elevations of the highest and lowest points in the basin. Measured or estimated mean basin elevation is then used in regression equations to estimate mean flow QC and the flow exceeded 95% of the time, Q95. QC is assumed to occur at the 27% exceedance frequency. Q02, Q05, and Q30 are estimated as multiples of QC. Equations are provided for calculating 95% confidence intervals for future estimates using the method. The dependence of mean flow on elevation is due to positive vertical precipitation gradients and negative vertical evapotranspiration gradients. The dependence of Q95 on elevation appears to be due largely to the fact that it rains more often, that snowmelt takes longer, and that evapotranspiration is reduced at higher elevations.  相似文献   
32.
The organizational self-control literature usually applies resource perspectives that explain self-control failure at work by depletion of self-control resources. However, these perspectives neglect the role of self-control motivation. On a daily level, we examine several self-control aspects (resources, motivation, demands, and effort) as predictors of a manifestation of self-control failure at work, namely, daily counterproductive work behavior toward the organization (CWB-O). Additionally, we investigate self-control effort as a mechanism predicting the depletion of self-control resources throughout the day. We analyzed data from 155 employees in a 2-week diary study with 2 daily measurement points. Multilevel path modeling showed that self-control motivation and self-control demands, but not self-control resource depletion, predicted self-control effort. There was an indirect effect from self-control motivation on CWB-O via self-control effort but no indirect effect from self-control demands on self-control resource depletion throughout the day via self-control effort. Findings suggest that self-control motivation is a crucial factor explaining self-control failure at work and cast further doubt on the idea that exerted self-control effort is the only mechanism leading to self-control resource depletion.  相似文献   
33.
ABSTRACT: Forest land managers are concerned about the effects of logging on soil erosion, streamflow, and water quality and are promoting the use of Best Management Practices (BMPs) to control impacts. To compare the effects of BMP implementation on streamwater quality, two of three small watersheds in Kentucky were harvested in 1983 and 1984, one with BMPs, the other without BMPs. There was no effect of clearcutting on stream temperatures. Streamflow increased by 17.8 cm (123 percent) on the BMP watershed during the first 17 months after cutting and by 20.6 cm (138 percent) on the Non-BMP watershed. Water yields remained significantly elevated compared to the uncut watershed 8 years after harvesting. Suspended sediment flux was 14 and 30 times higher on the BMP and Non-BMP Watersheds, respectively, than on the uncut watershed during treatment, and 4 and 6.5 times higher in the 17 months after treatment was complete. Clearcutting resulted in increased concentrations of nitrate, and other nutrients compared to the uncut watershed, and concentrations were highest on the non-BMP watershed. Recovery of biotic control over nutrient losses occurred within three years of clearcutting. The streamside buffer strip was effective in reducing the impact of clearcutting on water yield and sediment flux.  相似文献   
34.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   
35.
论文采用潮河、白河流域1980—2013年间气象、水文资料,基于水热耦合模型方法,分析了潮河、白河流域水循环要素相应于不同土地覆被类型结构变化和水平衡的特征。通过对未来10 a流域下垫面状况的预估,预测了未来变化环境条件下流域径流量的变化情况。研究对预测潮白河流域水资源变化特征、确保密云水库水资源安全具有重要意义。研究结果显示:该模型在潮、白河流域适用;在现有下垫面资料的基础上,利用林地面积和草地流域下垫面参数相结合的方法,对潮河流域和白河流域未来下垫面的变化分别做出了11种预测情景,并在11种情景的基础上预测两流域的未来10 a径流变化,结果显示潮河流域的径流深在26.47~53.55mm范围内波动,而白河流域的径流深在17.57~41.53 mm范围内变动。研究的创新点为,在对未来下垫面状况预测的基础上,利用水热耦合模型预测流域未来的可能径流状况。  相似文献   
36.
We investigate the sensitivity of phosphorus loading (mass/time) in an urban stream to variations in climate using nondimensional sensitivity, known as elasticity, methods commonly used by economists and hydrologists. Previous analyses have used bivariate elasticity methods to represent the general relationship between nutrient loading and a variable of interest, but such bivariate relations cannot reflect the complex multivariate nonlinear relationships inherent among nutrients, precipitation, temperature, and streamflow. Using fixed‐effect multivariate regression methods, we obtain two phosphorus models (nonparametric and parametric) for an urban stream with high explanatory power that can both estimate phosphorus loads and the elasticity of phosphorus loading to changes in precipitation, temperature, and streamflow. A case study demonstrates total phosphorus loading depends significantly on season, rainfall, combined sewer overflow events, and flow rate, yet the elasticity of total phosphorus to all these factors remains relatively constant throughout the year. The elasticity estimates reported here can be used to examine how nutrient loads may change under future climate conditions.  相似文献   
37.
Data-driven techniques are used extensively for hydrologic time-series prediction. We created various data-driven models (DDMs) based on machine learning: long short-term memory (LSTM), support vector regression (SVR), extreme learning machines, and an artificial neural network with backpropagation, to define the optimal approach to predicting streamflow time series in the Carson River (California, USA) and Montmorency (Canada) catchments. The moderate resolution imaging spectroradiometer (MODIS) snow-coverage dataset was applied to improve the streamflow estimate. In addition to the DDMs, the conceptual snowmelt runoff model was applied to simulate and forecast daily streamflow. The four main predictor variables, namely snow-coverage (S-C), precipitation (P), maximum temperature (Tmax), and minimum temperature (Tmin), and their corresponding values for each river basin, were obtained from National Climatic Data Center and National Snow and Ice Data Center to develop the model. The most relevant predictor variable was chosen using the support vector machine-recursive feature elimination feature selection approach. The results show that incorporating the MODIS snow-coverage dataset improves the models' prediction accuracies in the snowmelt-dominated basin. SVR and LSTM exhibited the best performances (root mean square error = 8.63 and 9.80) using monthly and daily snowmelt time series, respectively. In summary, machine learning is a reliable method to forecast runoff as it can be employed in global climate forecasts that require high-volume data processing.  相似文献   
38.
Resource depletion is of concern to both present and future generations in terms of access to resources. It is a prominent impact category within life cycle assessment (LCA) and sustainability assessment. This paper examines existing resource depletion approaches and indicators in the context of natural gas depletion, and their limitations in modelling the wider environmental consequences of resource consumption. Some existing models assume substitution of scarce fossil fuels with an alternative fossil fuel or mix, but do not consider all of the subsequent change in impacts. An additional methodology is proposed to measure the impact changes when fossil fuel substitution occurs as a result of scarcity. The methodology will demonstrate the effect of resource scarcity for individual processes but also multiple processes which operate at different levels of resource consumption with varying degrees of impacts. The methodology is applied to a scarcity situation of natural gas in Australia, where black coal is substituted for gas. It is first applied to natural gas consumed for electricity generation only. In the second case, the methodology is applied to the substitution of natural gas for both electricity generation and hydrogen production. The varying impacts on emissions to air and water, together with solid waste generation and water depletion, as a result of the substitution are used to reflect the consequences of fossil fuel depletion. The indicators also provide information on the impacts of substitution in each product, thus enabling users to prioritise products based on the impacts produced during natural gas allocation.  相似文献   
39.
Epps, Thomas H., Daniel R. Hitchcock, Anand D. Jayakaran, Drake R. Loflin, Thomas M. Williams, and Devendra M. Amatya, 2012. Characterization of Storm Flow Dynamics of Headwater Streams in the South Carolina Lower Coastal Plain. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12000 Abstract: Hydrologic monitoring was conducted in two first‐order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three‐year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph separation method that partitioned total streamflow into sustained base flow and direct runoff components. ROC ratios ranged from 0 to 0.32 on the Upper Debidue Creek (UDC) watershed and 0 to 0.57 on Watershed 80 (WS80); TSR results ranged from 0 to 0.93 at UDC and 0.01 to 0.74 at WS80. Variability in event runoff generation was attributed to seasonal trends in water table elevation fluctuation as regulated by evapotranspiration. Groundwater elevation breakpoints for each watershed were identified based on antecedent water table elevation, streamflow, ROCs, and TSRs. These thresholds represent the groundwater elevation above which event runoff generation increased sharply in response to rainfall. For effective coastal land use decision making, baseline watershed hydrology must be understood to serve as a benchmark for management goals, based on both seasonal and event‐based surface and groundwater interactions.  相似文献   
40.
Annual maximum peak discharge measurements from 62 stations with a record of at least 70 years are used to assess extreme flooding in Texas at the regional scale. This work focuses on examination of the validity of the stationarity assumption and on the impact of tropical cyclones (TCs) on the upper tail of the flood peak distribution. We assess the validity of the stationarity assumption by testing the records for abrupt and gradual changes. The presence of abrupt changes in the first two moments of the flood peak distribution is assessed using the Lombard test. We use the Mann‐Kendall test to examine the presence of monotonic trends. Results indicate that violations of the stationarity assumption are most commonly caused by abrupt changes, which are often associated with river regulation. We fit the time series of stationary flood records with the generalized extreme value distribution to investigate whether TCs control the upper tail of the flood peak distribution. Our results indicate that TCs play a diminished role in shaping the upper tail of the flood peak distribution compared with areas of the eastern United States subject to frequent TCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号