首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   48篇
  国内免费   14篇
废物处理   7篇
环保管理   263篇
综合类   20篇
基础理论   26篇
污染及防治   5篇
评价与监测   16篇
社会与环境   4篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   10篇
  2018年   11篇
  2017年   10篇
  2016年   15篇
  2015年   15篇
  2014年   21篇
  2013年   17篇
  2012年   16篇
  2011年   15篇
  2010年   9篇
  2009年   20篇
  2008年   17篇
  2007年   27篇
  2006年   22篇
  2005年   22篇
  2004年   9篇
  2003年   5篇
  2002年   13篇
  2001年   8篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1972年   2篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
51.
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region.  相似文献   
52.
Many species that inhabit seasonally ponded wetlands also rely on surrounding upland habitats and nearby aquatic ecosystems for resources to support life stages and to maintain viable populations. Understanding biological connectivity among these habitats is critical to ensure that landscapes are protected at appropriate scales to conserve species and ecosystem function. Biological connectivity occurs across a range of spatial and temporal scales. For example, at annual time scales many organisms move between seasonal wetlands and adjacent terrestrial habitats as they undergo life‐stage transitions; at generational time scales, individuals may disperse among nearby wetlands; and at multigenerational scales, there can be gene flow across large portions of a species’ range. The scale of biological connectivity may also vary among species. Larger bodied or more vagile species can connect a matrix of seasonally ponded wetlands, streams, lakes, and surrounding terrestrial habitats on a seasonal or annual basis. Measuring biological connectivity at different spatial and temporal scales remains a challenge. Here we review environmental and biological factors that drive biological connectivity, discuss implications of biological connectivity for animal populations and ecosystem processes, and provide examples illustrating the range of spatial and temporal scales across which biological connectivity occurs in seasonal wetlands.  相似文献   
53.
Ephemeral and intermittent streams are abundant in the arid and semiarid landscapes of the Western and Southwestern United States (U.S.). Connectivity of ephemeral and intermittent streams to the relatively few perennial reaches through runoff is a major driver of the ecohydrology of the region. These streams supply water, sediment, nutrients, and biota to downstream reaches and rivers. In addition, they provide runoff to recharge alluvial and regional groundwater aquifers that support baseflow in perennial mainstem stream reaches over extended periods when little or no precipitation occurs. Episodic runoff, as well as groundwater inflow to surface water in streams support limited naturally occurring riparian communities. This paper provides an overview and comprehensive examination of factors affecting the hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams on perennial or intermittent rivers in the arid and semiarid Southwestern U.S. Connectivity as influenced and moderated through the physical landscape, climate, and human impacts to downstream waters or rivers is presented first at the broader Southwestern scale, and secondly drawing on a specific and more detailed example of the San Pedro Basin due to its history of extensive observations and research in the basin. A wide array of evidence clearly illustrates hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams throughout stream networks.  相似文献   
54.
Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluvial hydrosystems. Physical and chemical connectivity within fluvial hydrosystems is created by the transport of nonliving materials (e.g., water, sediment, nutrients, and contaminants) which either do or do not chemically change (chemical and physical connections, respectively). A substantial body of evidence unequivocally demonstrates physical and chemical connectivity between streams and riparian wetlands and downstream waters. Streams and riparian wetlands are structurally connected to downstream waters through the network of continuous channels and floodplain form that make these systems physically contiguous, and the very existence of these structures provides strong geomorphologic evidence for connectivity. Functional connections between streams and riparian wetlands and their downstream waters vary geographically and over time, based on proximity, relative size, environmental setting, material disparity, and intervening units. Because of the complexity and dynamic nature of connections among fluvial hydrosystem units, a complete accounting of the physical and chemical connections and their consequences to downstream waters should aggregate over multiple years to decades.  相似文献   
55.
Natural channel design (NCD) and analytical channel design (ACD) are two competing approaches to stable channel design that share fundamental similarities in accounting for sediment transport processes with designs based on hybrid fluvial geomorphology and hydraulic engineering methods. In this paper, we highlight the linkage between ACD's capacity/supply ratio (CSR) and NCD's sediment capacity models (FLOWSED/POWERSED), illustrating how ACD and NCD have reached a point of convergent evolution within the stream restoration toolbox. We modified an existing CSR analytical spreadsheet tool which enabled us to predict relative channel stability using both conventional bed load transport equations and regional sediment regression curves. The stable channel design solutions based on measured data most closely matched the Parker (ACD) and/or Pagosa good/fair (NCD) relationships, which also showed the greatest CSR sensitivity in response to channel alterations. We found that CSR differences among the transport relationships became more extreme the further the design width deviated from the supply reach, suggesting that a stable upstream supply reach may serve as the best design analog. With this paper, we take a step toward resolving lingering controversy in the field of stream restoration, advancing the science and practice by reconciling key differences between ACD and NCD in the context of reach scale morphodynamics.  相似文献   
56.
The impact of bisphenol A (BPA) on Gammarus fossarum and Lumbriculus variegatus was studied in four artificial indoor streams (0, 5, 50 and 500?µg?L?1 BPA, nominal) over 103 days in a pulse–dose exposure scenario (weekly BPA application). For G. fossarum populations at day 103, the proportions of juveniles and of breeding females from the highest BPA treatment were in tendency reduced. For individually exposed gammarid pairs an EC10 of 17?µg?L?1 BPA (nominal) for the proportion of reproductive females in the fourth brood was determined. During the first three broods, the largest brood size occurred at the highest BPA concentration, whereas in the fourth brood it decreased concentration-dependently (fourth brood EC10?=?5?µg?L?1 BPA, nominal). Effects on L. variegatus were a reduced population growth (103?d-EC10 of 2?µg?L?1 BPA, nominal) and an increase in dry weight and the number of segments in large, complete worms.  相似文献   
57.
Abstract: In Amazonia reduced‐impact logging, which is meant to reduce environmental disturbance by controlling stem‐fall directions and minimizing construction of access roads, has been applied to large areas containing thousands of streams. We investigated the effects of reduced‐impact logging on environmental variables and the composition of fish in forest streams in a commercial logging concession in central Amazonia, Amazonas State, Brazil. To evaluate short‐term effects, we sampled 11 streams before and after logging in one harvest area. We evaluated medium‐term effects by comparing streams in 11 harvest areas logged 1–8 years before the study with control streams in adjacent areas. Each sampling unit was a 50‐m stream section. The tetras Pyrrhulina brevis and Hemigrammus cf. pretoensis had higher abundances in plots logged ≥3 years before compared with plots logged <3 years before. The South American darter (Microcharacidium eleotrioides) was less abundant in logged plots than in control plots. In the short term, the overall fish composition did not differ two months before and immediately after reduced‐impact logging. Temperature and pH varied before and after logging, but those differences were compatible with normal seasonal variation. In the medium term, temperature and cover of logs were lower in logged plots. Differences in ordination scores on the basis of relative fish abundance between streams in control and logged areas changed with time since logging, mainly because some common species increased in abundance after logging. There was no evidence of species loss from the logging concession, but differences in log cover and ordination scores derived from relative abundance of fish species persisted even after 8 years. For Amazonian streams, reduced‐impact logging appears to be a viable alternative to clear‐cut practices, which severely affect aquatic communities. Nevertheless, detailed studies are necessary to evaluated subtle long‐term effects.  相似文献   
58.
Armoring of streambanks is a common management response to perceived threats to adjacent infrastructure from flooding or erosion. Despite their pervasiveness, effects of reach‐scale bank armoring have received less attention than those of channelization or watershed‐scale hydromodification. In this study, we explored mechanistic ecosystem responses to armoring by comparing conditions upstream, within, and downstream of six stream reaches with bank armoring in Southern California. Assessments were based on four common stream‐channel assessment methods: (1) traditional geomorphic measures, (2) the California Rapid Assessment Method for wetlands, (3) bioassessment with benthic macroinvertebrates, and (4) bioassessment with stream algae. Although physical responses varied among stream types (mountain, transitional, and lowland), armored segments generally had lower slopes, more and deeper pools and fewer riffles, and increased sediment deposition. Several armored segments exhibited channel incision and bank toe failure. All classes of biological indicators showed subtle, mechanistic responses to physical changes. However, extreme heterogeneity among sites, the presence of catchment‐scale disturbances, and low sample size made it difficult to ascribe observed patterns solely to channel armoring. The data suggest that species‐level or functional group‐level metrics may be more sensitive tools than integrative indices of biotic integrity to local‐scale effects.  相似文献   
59.
Supreme Court cases have questioned if jurisdiction under the Clean Water Act extends to water bodies such as streams without year‐round flow. Headwater streams are central to this issue because many periodically dry, and because little is known about their influence on navigable waters. An accurate account of the extent and flow permanence of headwater streams is critical to estimating downstream contributions. We compared the extent and permanence of headwater streams from two field surveys with values from databases and maps. The first used data from 29 headwater streams in nine U.S. forests, whereas the second had data from 178 headwater streams in Oregon. Synthetic networks developed from the nine‐forest survey indicated that 33 to 93% of the channel lacked year‐round flow. Seven of the nine forests were predicted to have >200% more channel length than portrayed in the high‐resolution National Hydrography Dataset (NHD). The NHD and topographic map classifications of permanence agreed with ~50% of the field determinations across ~300 headwater sites. Classification agreement with the field determinations generally increased with increasing resolution. However, the flow classification on soil maps only agreed with ~30% of the field determination despite depicting greater channel extent than other maps. Maps that include streams regardless of permanence and size will aid regulatory decisions and are fundamental to improving water quality monitoring and models.  相似文献   
60.
Lu, Haorong, S. Samuel Li, and Jinsong Guo, 2012. Modeling Monthly Fluctuations in Submersion Area of a Dammed River Reservoir: A Case Study. Journal of the American Water Resources Association (JAWRA) 1‐13. DOI: 10.1111/jawr.12003 Abstract: Fluctuations in water submersion of the Three Gorges Reservoir in China have not been explored in spite of their important implications for shoreline erosion and other undesirable consequences. This article aims to quantify the monthly fluctuations in response to changing hydraulic parameters and regional climatic factors. Flow velocity and water levels distributed along the 609‐km long dammed river reservoir are calculated with a one‐dimensional hydrodynamics model. Evaporation of water from the surface of the reservoir is determined using mass transfer‐based methods. Calculated flow velocities and water levels compare well with field data. We show that the water surface slope decreases with rising water level at the dam, and decreases to almost zero during the winter months of water storage when the downstream water level reaches the normal pool level. The submersion area varies between 830 and 1,070 km2 over the year or over 20% of the reservoir zone will experience the annual cycle of dry land and partial or complete submersion. These fluctuations are of relevance to shoreline management and to the prevention and restoration of shoreline erosion. Evaporation is estimated to fluctuate between 1,240 and 26,110 tons of water per month per kilometer length of reservoir channel; this can possibly affect the hydrological budget of the reservoir region. The simple methodologies discussed in this article can easily be applied to other dammed river reservoirs for submersion estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号