首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   80篇
  国内免费   179篇
安全科学   101篇
废物处理   8篇
环保管理   299篇
综合类   417篇
基础理论   77篇
污染及防治   78篇
评价与监测   24篇
社会与环境   41篇
灾害及防治   30篇
  2023年   8篇
  2022年   15篇
  2021年   24篇
  2020年   23篇
  2019年   23篇
  2018年   28篇
  2017年   36篇
  2016年   39篇
  2015年   46篇
  2014年   40篇
  2013年   58篇
  2012年   59篇
  2011年   56篇
  2010年   40篇
  2009年   42篇
  2008年   46篇
  2007年   49篇
  2006年   63篇
  2005年   48篇
  2004年   32篇
  2003年   33篇
  2002年   31篇
  2001年   27篇
  2000年   25篇
  1999年   15篇
  1998年   19篇
  1997年   13篇
  1996年   11篇
  1995年   8篇
  1994年   10篇
  1993年   13篇
  1992年   4篇
  1991年   10篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   10篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   7篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1975年   6篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1075条查询结果,搜索用时 375 毫秒
241.
ABSTRACT: Direct measurements indicate that subsurface seepage in the littoral zone contributed 17.5 and 2.0 percent of the total hydraulic inputs, respectively, to Lakes Conway and Apopka, Florida. Two variations of seepage measuring devices were evaluated and gave relative standard deviations of 7 and 24 percent. Measurement inaccuracies were minimized by using large diameter (0.9 cm ID) plastic tubing. For a given transect perpendicular to shore, flow patterns were reproducible over time. Seepage flows ranged from 0 to 112 1/m2-day and most were between 4 and 30 1/m2-day. The detection limit was about 0.2 1/m2-day for a one-hour collection period. Seepage occured primarily within 30 m of shore and generally decreased exponentially with distance from shore. The shape of the bottom profile influenced flow patterns; lake bottoms with steeper slopes had higher flows that were compressed within a narrower zone. After a short-term rain event at Lake Conway, seepage flows increased rapidly to 2.4 times the prerain flow for 1 h and decreased to near background within about 6 h.  相似文献   
242.
ABSTRACT: The St. Johns River basin is the largest watershed entirely within the State of Florida, and is one of the few northward flowing rivers in the United States. The river basin contains 11,431 square miles, of which 9,430 square miles are drained by the river and its tributaries. The remainder drains into the Atlantic Ocean or the Intracoastal Waterway. Its largest sub-basin is the Oklawaha River basin, which has a drainage area of 2,870 square miles. Ground elevations range from sea level to 200 feet above mean sea level in the main river basin and as high as 300 feet above mean sea level in the Oklawaha River basin. This study was designed to investigate the surface water resources of the St. Johns River and the existing consumptive uses. The analysis revealed that the river is an extremely large and valuable resource which has been under-utilized and could play a much stronger role in serving the needs of the people in the basin.  相似文献   
243.
ABSTRACT: ERTS-1 satellite imagery has been evaluated as a means of providing useful watershed physiography information. From these data physiographic parameters such as drainage basin area and shape, drainage density, stream length and sinuosity, and the percentage of a watershed occupied by major land use types were obtained in three study areas. The study areas were: (1) Southwestern Wisconsin; (2) Eastern Colorado; and (3) portions of the Middle Atlantic States Using ERTS-1 imagery at 1:250,000 and 1:100,000 scales it was found that drainage basin area and shape and stream sinuosity were comparable (within 10%) in all study areas to physiographic measurements derived from conventional topographic maps at the same scales Land use information can be usefully extracted for watersheds as small as 30 mi2(78 km2) in area. Improved drainage network and density information is obtained from ERTS-1 imagery in dissected areas such as Southwestern Wisconsin, but in heavily vegetated areas (Middle Atlantic States) or areas with little physical relief (Eastern Colorado) low order streams are difficult to detect and the derived drainage densities are significantly smaller than those obtained from standard maps. It is concluded that ERTS-1 imagery can be employed to advantage in mean annual runoff prediction techniques and in providing or maintaining land use information used in the calibration and operation of watershed models.  相似文献   
244.
ABSTRACT Sinkholes and subsidence in areas subject to dewatering of carbonate formations have been documented in several geologic and hydrologic investigations. Excessive ground-water pumpage has been cited as a causative factor in areas of increased sinkhole activity. Subsurface erosion of unconsolidated materials underlain by carbonate rocks is one cause of the collapses. Infiltrating water from retention basins may cause subsurface erosion and eventual failure by collapse of the structure. The resulting ground-water contamination would be great as the pollutants spread throughout the solution-cavity system.  相似文献   
245.
The relative contributions of four mechanisms of oxygen transport in multilayer composite (MLC) caps placed over oxygen-consuming mine waste were evaluated using numerical and analytical methods. MLC caps are defined here as caps consisting of earthen and geosynthetic (polymeric) components where a composite barrier layer consisting of a geomembrane (1-2 mm thick polymeric sheet) overlying a clay layer is the primary barrier to transport. The transport mechanisms that were considered are gas-phase advective transport, gas-phase diffusive transport, liquid-phase advective transport via infiltrating precipitation and liquid-phase diffusive transport. A numerical model was developed to simulate gas-phase advective-diffusive transport of oxygen through a multilayer cap containing seven layers. This model was also used to simulate oxygen diffusion in the liquid phase. An approximate analytical method was used to compute the advective flux of oxygen in the liquid phase. The numerical model was verified for limiting cases using an analytical solution. Comparisons were also made between model predictions and field data for earthen caps reported by others. Results of the analysis show that the dominant mechanism for oxygen transport through MLC caps is gas-phase diffusion. For the cases that were considered, the gas-phase diffusive flux typically comprises at least 99% of the total oxygen flux. Thus, designers of MLC caps should focus on design elements and features that will limit diffusion of gas-phase oxygen.  相似文献   
246.
瓦斯灾害治理新技术   总被引:22,自引:5,他引:22  
在分析煤矿安全科技工作现状和趋势基础上 ,介绍了近年来我国瓦斯灾害防治技术研究取得的进展和新成果。通过“十五”科技攻关项目的研究 ,提出了瓦斯煤尘爆炸危险性评价方法 ,研究出了基于瓦斯地质、地质动力区划、电磁波探测方法的煤与瓦斯突出区域预测技术和基于AE声发射、电磁辐射和瓦斯涌出等原理的煤与瓦斯突出非接触连续预测技术 ,实验成功了高瓦斯煤层群开采保护层瓦斯灾害综合防治及顺煤层强化抽放等技术 ,开发了矿井通风系统监测、可靠性评价分析及决策控制技术。另外还分析了我国煤矿安全所面临的挑战和急需开展的科技研究工作。  相似文献   
247.
酸性矿山废水的处理研究   总被引:4,自引:1,他引:4  
本文简要分析了酸性矿山废水的主要污染物及危害,叙述了几种主要的处理技术:中和法、硫化沉淀浮选法、微生物法和人工湿地,并介绍了它们的机理、特点及实验研究和工业应用情况,由此对我国的酸性矿山废水的治理技术进行了前景展望。  相似文献   
248.
ABSTRACT: For more than 30 years, a program of continuous monitoring of pH, acidity, alkalinity, and other parameters has been maintained on a network of large streams degraded by acid mine drainage in the northern Appalachian high sulfur coal region. Continuous records since 1952 are available at a number of stations, and at several stations, acidity records date back to 1930. Comparable analysis techniques were maintained over the period of record, assuring the long term continuity of the database. This monitoring program has captured integrated long term trends within large and complex watersheds with numerous and varied types of mine discharges. The focus of this paper is a historical trend analysis of lightly to severely acid degraded major tributaries of the Allegheny River. Over the past three decades, all of the Allegheny River drainage basin stations have demonstrated steady and substantial declines in acidity and associated increases in pH and alkalinity. The average recorded decline in total acidity at four stations monitored since the 1950s was 94 percent. Since the 1970s, acidity declined by an average of 63 percent at 10 stations. Oxidative exhaustion of pyritic minerals exposed by mining is proposed as a major factor influencing these trends.  相似文献   
249.
ABSTRACT: In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within ± 11 percent of actual, within ± 14 percent for seven-day forecasts, and within ± 26 percent for 14-day forecasts for the 16- month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to ± 9 percent for the model and ± 11 percent and ± 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.  相似文献   
250.
Studies of irrigation drainage in the Western United States have documented some of the effects of irrigating land without first understanding and then considering implications from the interdependent relationships of hydrology, geology, geochemistry, biology, climatology, land use and socio-economic issues. In studies completed in 26 areas, selenium is the trace element found most often at elevated concentrations in water, bottom material and biota. Boron, arsenic, mercury and pesticide residues have also been found at elevated levels in some areas. Bioaccumulation of constituents associated with irrigation drainage is common. As the world experiences an explosive population growth, particularly in poorer countries, demands for food production from marginal, submarginal and newly irrigated soils are likely to cause severe adverse environmental impacts from allocation of limited water resources and contamination from irrigation drainwater. Cultivated marginal land is highly susceptible to degradation from soil erosion, salinization and waterlogging, not withstanding release of contaminants from application of irrigation water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号