首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1995篇
  免费   277篇
  国内免费   849篇
安全科学   193篇
废物处理   60篇
环保管理   555篇
综合类   1524篇
基础理论   296篇
污染及防治   225篇
评价与监测   151篇
社会与环境   60篇
灾害及防治   57篇
  2024年   16篇
  2023年   61篇
  2022年   98篇
  2021年   103篇
  2020年   98篇
  2019年   97篇
  2018年   79篇
  2017年   117篇
  2016年   131篇
  2015年   160篇
  2014年   168篇
  2013年   229篇
  2012年   218篇
  2011年   180篇
  2010年   124篇
  2009年   110篇
  2008年   92篇
  2007年   165篇
  2006年   117篇
  2005年   109篇
  2004年   74篇
  2003年   91篇
  2002年   63篇
  2001年   55篇
  2000年   47篇
  1999年   47篇
  1998年   37篇
  1997年   34篇
  1996年   31篇
  1995年   27篇
  1994年   26篇
  1993年   17篇
  1992年   5篇
  1991年   11篇
  1990年   5篇
  1989年   10篇
  1988年   7篇
  1987年   15篇
  1985年   5篇
  1983年   2篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
排序方式: 共有3121条查询结果,搜索用时 250 毫秒
891.
Hathaway, Deborah L., 2011. Transboundary Groundwater Policy: Developing Approaches in the Western and Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(1):103‐113. DOI: 10.1111/j.1752‐1688.2010.00494.x Abstract: The western and southwestern United States include dozens of groundwater basins that cross political boundaries. Common among these shared groundwater basins is an overlay of differing legal structures and water development priorities, typically, with insufficient water supply for competing human uses, and often, a degraded ecosystem. Resolution of conflicts over ambiguously regulated groundwater has clarified transboundary groundwater policy in some interstate basins, while transboundary groundwater policy in international basins is less evolved. This paper identifies and contrasts approaches to transboundary groundwater policy, drawing from recent conflicts and cooperative efforts, including those associated with the interstate compacts on the Arkansas and Pecos Rivers; the Hueco and Lower Rio Grande Basins shared by New Mexico, Texas, and Mexico; and the Mexicali Basin in California and Mexico. Some efforts seek to fit groundwater policy into existing surface water allocation procedures; some strive for a better fit – incorporating scientific understanding of key differences between groundwater and surface water into policy frameworks. In some cases, neither policy nor precedent exists. The collective experience of these and other cases sets the stage for improved management of transboundary groundwater; as such, challenges and successes of these approaches, and those contemplated in several hypothetical model agreements, are examined.  相似文献   
892.
针对铝材企业NH4HF2表面处理废水含有高浓度的NHs-N和F-等特点,采用气浮+磷酸铵镁(MAP)化学沉淀法对NH4HF2废水进行预处理,可达到目标处理效果,再引入氧化废水池进一步处理,继而达标排放.经验证,该方法是一种技术可行、经济合理的NH4 HF2废水处理方法.  相似文献   
893.
为了合理地确定边坡的最不利滑裂面、探讨坡顶开裂原因及出现滑坡险情时的应急措施,将变分方法用于边坡稳定性分析。通过建立一个与边坡稳定相关的泛函,根据边界条件选取适当的基函数,获得了边坡最不利滑裂面。基于所得最不利滑裂面,得到垂直边坡和普通边坡最不利滑裂面的分布随土体内摩擦角和内聚力的变化趋势,为垂直边坡和普通边坡采取正确的应急措施、提高边坡的稳定性提供了理论依据;根据泛函T沿最不利滑裂面的变化将边坡划分为主动滑动区和被动滑动区。比较分析得出:变分方法和Bishop条分法所获得的安全系数比较接近,且变分方法获得的安全系数略小。  相似文献   
894.
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models.  相似文献   
895.
为了分析不同植物群落在不同生长阶段近地表层的持水能力及其差异特征,该文通过选择豫南山区不同群落不同生长阶段的50个典型样地,对近地表层的地上草和枯落物的有关持水能力指标进行测定分析。结果表明:地上草生物量呈随林龄的增大而减少的趋势,与其持水量之间呈极显著正相关关系(P〈0.01),其拦蓄能力变化趋势为:草丛〉灌丛〉针叶林(20 a)〉针叶林(45 a)〉针阔混交林(20 a)〉针阔混交林(30 a)〉阔叶林(10 a)〉针阔混交林(50 a)〉阔叶林(20 a)〉阔叶林(30 a);枯落物最大持水量、有效拦蓄量与现存量间呈正相关关系,其中最大持水量变化趋势为:灌丛〉阔叶林(20 a)〉阔叶林(30 a)〉针阔混交林(30 a)〉针阔混交林(20 a)〉针阔混交林(50 a)〉针叶林(20 a)〉阔叶林(10 a)〉针叶林(45 a)〉草丛。该地区不同群落类型近地表层总持水能力变化趋势为:灌丛〉针叶林〉阔叶林〉针阔混交林〉草丛,这说明应当加大对乔木林分林下植被的保护,以利更好的水土保持效果。  相似文献   
896.
基于人工蜂群算法的边坡最危险滑动面搜索   总被引:2,自引:0,他引:2  
将用于连续数值优化问题的人工蜂群算法引入边坡稳定分析临界滑动面搜索领域.该方法模拟了蜂群的群体协作采蜜过程,具有自适应收敛的特点,克服了传统方法容易陷入局部最优的缺点,是一种全局优化算法.为进一步改善其在复杂边坡搜索中的效果,将Hooke-Jeeves模式搜索操作引入人工蜂群算法,提出一种用于边坡临界滑动面搜索的模式搜...  相似文献   
897.
898.
Abstract: The 1:24,000‐scale high‐resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time‐relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR‐derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.  相似文献   
899.
Agricultural irrigation accounts for a large fraction of the total water use in the western United States. The Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) remote sensing energy balance model is being used to estimate historical agricultural water use in western Nevada to evaluate basin‐wide water budgets. Each METRIC evapotranspiration (ET) estimate must be calibrated by a trained user, which requires some iterative time investment and results in variation in ET estimates between users. An automated calibration algorithm for the METRIC model was designed to generate ET estimates comparable to those from trained users by mimicking the manual calibration process. Automated calibration allows for rapid generation of METRIC ET estimates with minimal manual intervention, as well as uncertainty and sensitivity analysis of the model. The variation in ET estimates generated by the automated calibration algorithm was found to be similar to the variation in manual ET estimates. Results indicate that uncertainty was highest for fields with low ET levels and lowest for fields with high ET levels, with a seasonal mean uncertainty of approximately 5% for all fields. In addition, in a blind comparison, automated daily and seasonal ET estimates compared well with flux tower measurement ET data at multiple sites. Automated methods can generate first‐order ET estimates that are similar to time intensive manual efforts with less time investment.  相似文献   
900.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号