首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   95篇
  国内免费   165篇
安全科学   1篇
废物处理   2篇
环保管理   634篇
综合类   354篇
基础理论   69篇
污染及防治   12篇
评价与监测   55篇
社会与环境   62篇
灾害及防治   7篇
  2024年   4篇
  2023年   11篇
  2022年   14篇
  2021年   27篇
  2020年   26篇
  2019年   34篇
  2018年   15篇
  2017年   34篇
  2016年   36篇
  2015年   52篇
  2014年   27篇
  2013年   63篇
  2012年   62篇
  2011年   51篇
  2010年   42篇
  2009年   54篇
  2008年   39篇
  2007年   43篇
  2006年   69篇
  2005年   48篇
  2004年   44篇
  2003年   54篇
  2002年   56篇
  2001年   31篇
  2000年   38篇
  1999年   26篇
  1998年   21篇
  1997年   19篇
  1996年   13篇
  1995年   16篇
  1994年   10篇
  1993年   7篇
  1992年   7篇
  1991年   7篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   10篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1196条查询结果,搜索用时 237 毫秒
291.
ABSTRACT: The term flashiness reflects the frequency and rapidity of short term changes in streamflow, especially during runoff events. Flashiness is an important component of a stream's hydrologic regime. A variety of land use and land management changes may lead to increased or decreased flashiness, often to the detriment of aquatic life. This paper presents a newly developed flashiness index, which is based on mean daily flows. The index is calculated by dividing the pathlength of flow oscillations for a time interval (i.e., the sum of the absolute values of day‐to‐day changes in mean daily flow) by total discharge during that time interval. This index has low interannual variability, relative to most flow regime indicators, and thus greater power to detect trends. Index values were calculated for 515 Midwestern streams for the 27‐year period from 1975 through 2001. Statistically significant increases were present in 22 percent of the streams, primarily in the eastern portion of the study area, while decreases were present in 9 percent, primarily in the western portion. Index values tend to decrease with increasing watershed area and with increasing unit area ground water inputs. Area compensated index values often shift at ecoregion boundaries. Potential index applications include evaluation of programs to restore more natural flow regimes.  相似文献   
292.
ABSTRACT: In 2002, Wyoming became the first state to complete development of a statewide 1:24,000‐scale Watershed Boundary Dataset (WBD) under the new Federal Standards for Delineation of Hydrologic Unit Boundaries. The product was developed through the coordinated efforts of numerous state, federal, and local entities both within Wyoming and in neighboring states. Development of a comprehensive, standardized hydrologic unit boundary dataset in a “headwaters” state such as Wyoming poses a number of unique challenges. This paper details the WBD's development in Wyoming, highlighting technical methodology development and interagency coordination strategies. Evolution of the WBD standard is reviewed, addressing inconsistencies between definitions for hydro‐logic units and “true” watershed delineations. While automated methods are improving, manual and semi‐automated techniques continue to serve as valuable approaches to hydrologic unit boundary delineation given the quality of digital terrain models and the multijurisdictional nature of watershed based management. This case study provides insight on future development and maintenance of the WBD within and across other states and regions of the country and on opportunities for linking the WBD to related water resource geospatial data products like the National Hydrography Dataset.  相似文献   
293.
ABSTRACT: The U.S. Environmental Protection Agency (USEPA) Water Quality Analysis Simulation Program (WASP5) was used to model the transport and sediment/water interactions of metals under low flow, steady state conditions in Tenmile Creek, a mountain stream supplying drinking water to the City of Helena, Montana, impacted by numerous abandoned hard rock mines. The model was calibrated for base flow using data collected by USEPA and validated using data from the U.S. Geological Survey (USGS) for higher flows. It was used to assess metals loadings and losses, exceedances of Montana State water quality standards, metals interactions in stream water and bed sediment, uncertainty in fate and transport processes and model parameters, and effectiveness of remedial alternatives that include leaving contaminated sediment in the stream. Results indicated that during base flow, adits and point sources contribute significant metals loadings to the stream, but that shallow ground water and bed sediment also contribute metals in some key locations. Losses from the water column occur in some areas, primarily due to adsorption and precipitation onto bed sediments. Some uncertainty exists in the metal partition coefficients associated with sediment, significance of precipitation reactions, and in the specific locations of unidentified sources and losses of metals. Standards exceedances are widespread throughout the stream, but the model showed that remediation of point sources and mine waste near water courses can help improve water quality. Model results also indicate, however, that alteration of the water supply scheme and increasing base flow will probably be required to meet all water quality standards.  相似文献   
294.
ABSTRACT: Watershed and aquatic ecosystem management requires methods to predict and understand thermal impacts on stream habitat from urbanization. This study evaluates thermal effects of projected urbanization using a modeling framework and considers the biological implications to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with the Hydrologic Simulation Program Fortran (HSPF) to assess changes in stream thermal habitat under altered stream‐ flow, shade, and channel width associated with low, medium, and high density urban developments in the Back Creek watershed (Roanoke County, Virginia). Flow alteration by the high density development scenario alone caused minimal heating of mean daily summer base flow (mean +0.1°C). However, when flow changes were modeled concurrently with reduced shade and increased channel width, mean daily temperature increased 1°C. Maximum daily temperatures exceeding the state standard (31°C) increased from 1.1 to 7.6 percent of the time using summer 2000 climatic conditions. Model results suggest that additional urban development will alter stream temperature, potentially limiting thermal habitat and shifting the fish community structure from intolerant to tolerant fish species in Back Creek. More research is needed on the sub‐lethal or chronic effects of increased stream temperature regimes on fish, particularly for those species already living in habitats near their upper limits.  相似文献   
295.
ABSTRACT: Traditional approaches to establishing critical water quality conditions, based on statistical analysis of low flow conditions and expressed as a recurrence interval for low flow conditions (e.g., 7Q10), may be inappropriate for drier watersheds. The use of 7Q10 as a standard design flow assumes year‐round flow, but in these watersheds, 7Q10 is zero or very small. In addition, the increasing use of multiple year dynamic water quality models at daily time steps can supercede the use of steady state approaches. Many of these watersheds are also under increasing urbanization pressure, which accentuates the flashiness of runoff and the episodic nature of critical water quality conditions. To illustrate, the conditions in the Santa Clara River, California, are considered. A statistical analysis indicates that higher inorganic nitrogen concentrations correlate strongly with low flow. However, peaks in concentrations can occur during the first storms, particularly where nonpoint source contribution is significant. Critical conditions can thus occur at different flow regimes depending on the relative magnitude of flow and pollutant contributions from various sources. The use of steady state models for these dry semi‐urbanized watersheds based on 7Q10 flows is thus unlikely to accurately simulate the potential for exceeding water quality objectives. Dynamic simulation of water quality is necessary, and as the recent intense storm event sampling data indicate, the models should be formulated to consider even smaller time steps. This places increasing demand on computational resources and datasets to accurately calibrate the models at this temporal resolution.  相似文献   
296.
ABSTRACT: The size, scale, and number of subwatersheds can affect a watershed modeling process and subsequent results. The objective of this study was to determine the appropriate level of subwatershed division for simulating flow, sediment, and nutrients over 30 years for four Iowa watersheds ranging in size from 2,000 to 18,000 km2 with the Soil and Water Assessment Tool (SWAT) model. The results of the analysis indicated that variation in the total number of subwatersheds had very little effect on streamflow. However, the opposite result was found for sediment, nitrate, and inorganic P; the optimal threshold subwatershed sizes, relative to the total drainage area for each watershed, required to adequately predict these three indicators were found to be around 3, 2, and 5 percent, respectively. Decreasing the size of the subwatersheds below these threshold levels does not significantly affect the predicted levels of these environmental indicators. These threshold subwatershed sizes can be used to optimize input data preparation requirements for SWAT analyses of other watersheds, especially those within a similar size range. The fact that different thresholds emerged for the different indicators also indicates the need for SWAT users to assess which indicators should have the highest priority in their analyses.  相似文献   
297.
ABSTRACT: The Snowmelt Runoff Model (SRM) is designed to compute daily stream discharge using satellite snow cover data for a basin divided into elevation zones. For the Towanda Creek basin, a Pennsylvania watershed with relatively little relief, analysis of snow cover images revealed that both elevation and land use affected snow accumulation and melt on the landscape. The distribution of slope and aspect on the watershed was also considered; however, these landscape features were not well correlated with the available snow cover data. SRM streamflow predictions for 1990, 1993 and 1994 snowmelt seasons for the Towanda Creek basin using a combination of elevation and land use zones yielded more precise streamflow estimates than the use of standard elevation zones alone. The use of multiple-parameter zones worked best in non-rain-on-snow conditions such as in 1990 and 1994 seasons where melt was primarily driven by differences in solar radiation. For seasons with major rain-on-snow events such as 1993, only modest improvements were shown since melt was dominated by rainfall energy inputs, condensation and sensible heat convection. Availability of GIS coverages containing satellite snow cover data and other landscape attributes should permit similar reformulation of multiple-parameter watershed zones and improved SRM streamflow predictions on other basins.  相似文献   
298.
ABSTRACT: A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wet. land density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.  相似文献   
299.
ABSTRACT: This paper describes the application of a river basin scale hydrologic model (described in Part I) to Richland and Chambers Creeks watershed (RC watershed) in upper Trinity River basin in Texas. The inputs to the model were accumulated from hydro-graphic and geographic databases and maps using a raster-based GIS. Available weather data from 12 weather stations in and around the watershed and stream flow data from two USGS stream gauge station for the period 1965 to 1984 were used in the flow calibration and validation. Sediment calibration was carried out for the period 1988 through 1994 using the 1994 sediment survey data from the Richland-Chambers lake. Sediment validation was conducted on a subwatershed (Mill Creek watershed) situated on Chambers Creek of the RC watershed. The model was evaluated by well established statistical and visual methods and was found to explain at least 84 percent and 65 percent of the variability in the observed stream flow data for the calibration and validation periods, respectively. In addition, the model predicted the accumulated sediment load within 2 percent and 9 percent from the observed data for the RC watershed and Mill Creek watershed, respectively.  相似文献   
300.
我国水污染现状及防治对策   总被引:2,自引:1,他引:2  
杨楠  杨柳 《四川环境》1997,16(3):52-55
我国是一个水资料严重匮乏和水污染十分严重的国家,加强水污染管理和控制刻不容缓。为此,本文结合发达国家立法现状,从组织,民众意识、水污染排放标准,监测方法等方面论述加强水污染控制的管理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号