首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   31篇
  国内免费   4篇
废物处理   1篇
环保管理   162篇
综合类   10篇
基础理论   4篇
评价与监测   6篇
社会与环境   2篇
  2023年   3篇
  2021年   2篇
  2019年   5篇
  2018年   5篇
  2017年   10篇
  2016年   14篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   6篇
  2008年   8篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有185条查询结果,搜索用时 500 毫秒
21.
Abstract: Limited information exists on pesticide use for nonagricultural purposes, making it difficult to estimate pesticide loadings from nonagricultural sources to surface water and to conduct environmental risk assessments. A method was developed to estimate the amount of pesticide use on recreational turf grasses, specifically golf course turf grasses, for watersheds located throughout the conterminous United States (U.S.). The approach estimates pesticide use: (1) based on the area of recreational turf grasses (used as a surrogate for turf associated with golf courses) within the watershed, which was derived from maps of land cover, and (2) from data on the location and average treatable area of golf courses. The area of golf course turf grasses determined from these two methods was used to calculate the percentage of each watershed planted in golf course turf grass (percent crop area, or PCA). Turf‐grass PCAs derived from the two methods were used with recommended application rates provided on pesticide labels to estimate total pesticide use on recreational turf within 1,606 watersheds associated with surface‐water sources of drinking water. These pesticide use estimates made from label rates and PCAs were compared to use estimates from industry sales data on the amount of each pesticide sold for use within the watershed. The PCAs derived from the land‐cover data had an average value of 0.4% of a watershed with minimum of 0.01% and a maximum of 9.8%, whereas the PCA values that are based on the number of golf courses in a watershed had an average of 0.3% of a watershed with a minimum of <0.01% and a maximum of 14.2%. Both the land‐cover method and the number of golf courses method produced similar PCA distributions, suggesting that either technique may be used to provide a PCA estimate for recreational turf. The average and maximum PCAs generally correlated to watershed size, with the highest PCAs estimated for small watersheds. Using watershed specific PCAs, combined with label rates, resulted in greater than two orders of magnitude over‐estimation of the pesticide use compared to estimates from sales data.  相似文献   
22.
Major coastal flooding events over the last decade have led decision makers in the United States to favor structural engineering solutions as a means to protect vulnerable coastal communities from the adverse impacts of future storms. While a resistance‐based approach to flood mitigation involving large‐scale construction works may be a central component of a regional flood risk reduction strategy, it is equally important to consider the role of land use and land cover (LULC) patterns in protecting communities from floods. To date, little observational research has been conducted to quantify the effects of various LULC configurations on the amount of property damage occurring across coastal regions over time. In response, we statistically examine the impacts of LULC on observed flood damage across 2,692 watersheds bordering the Gulf of Mexico. Specifically, we analyze statistical linear regression models to isolate the influence of multiple LULC categories on over 372,000 insured flood losses claimed under the National Flood Insurance Program per year from 2001 to 2008. Results indicate that percent increase in palustrine wetlands is the equivalent to, on average, a $13,975 reduction in insured flood losses per year, per watershed. These and other results provide important insights to policy makers on how protecting specific types of LULC can help reduce adverse impacts to local communities.  相似文献   
23.
The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de‐trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small‐ and intermediate‐sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.  相似文献   
24.
Spatially comprehensive estimates of the physical characteristics of river segments over large areas are required in many large‐scale analyses of river systems and for the management of multiple basins. Remote sensing and modeling are often used to estimate river characteristics over large areas, but the uncertainties associated with these estimates and their dependence on the physical characteristics of the segments and their catchments are seldom quantified. Using test data with varying degrees of independence, we derived analytical models of the uncertainty associated with estimates of upstream catchment area (CA), segment slope, and mean annual discharge for all river segments of a digital representation of the hydrographic network of France. Although there were strong relationships between our test data and estimates at the scale of France, there were also large relative local uncertainties, which varied with the physical characteristics of the segments and their catchments. Discharge and CA were relatively uncertain where discharge was low and catchments were small. Discharge uncertainty also increased in catchments with large rainfall events and low minimum temperature. The uncertainty of segment slope was strongly related to segment length. Our uncertainty models were consistent across large regions of France, suggesting some degree of generality. Their analytical formulation should facilitate their use in large‐scale ecological studies and simulation models.  相似文献   
25.
Urban stream restoration continues to be used as an ecological management tool, despite uncertainty about the long‐term sustainability and resilience of restored systems. Evaluations of restoration success often focus on specific instream indicators, with limited attention to the wider basin or parallel hydrologic and geomorphic process. A comprehensive understanding of urban stream restoration progress is particularly important for comparisons with nonurban sites as urban streams can provide substantial secondary benefits to urban residents. Here, we utilize a wide range of indicators to retrospectively examine the restoration of Nine Mile Run, a multi‐million dollar stream restoration project in eastern Pittsburgh (Pennsylvania, USA). Examination of available continuous hydrological data illustrates the high cost of failures to incorporate the data into planning and adaptive management. For example, persistent extreme flows drive geomorphic degradation threatening to reverse hydrologic connections created by the restoration and impact the improved instream biotic communities. In addition, human activities associated with restoration efforts suggest a positive feedback as the stream restoration has focused effort on the basin beyond the reach. Ultimately, urban stream restoration remains a potentially useful management tool, but continued improvements in post‐project assessment should include examination of a wider range of indicators.  相似文献   
26.
ABSTRACT: The effect of flow persistence on seasonal patterns of watershed runoff was modeled by using runoff of the immediate antecedent month as an index. Monthly runoff was expressed as a function of monthly rainfall, season of the year, and runoff of the antecedent month. The three independent variables were expressed functionally as sliding polynomials, thus producing a piece-wise, form-free, three-dimensional causative structure. A model form allowing complete interactivity of the three independent variables could not be optimized because of insufficient data with high values of both antecedent runoff and monthly rainfall. A model with reduced interactivity was successfully optimized. Data sets from five watersheds ranging from 0.14 to 398 square miles were analyzed. Results were presented as a series of contour maps that showed contours of monthly runoff in the data space of season and monthly rain. In the series of maps, the patterns of the runoff contours changed with changing values of antecedent runoff. During the wet season of the year the contours changed significantly with antecedent runoff, but changes in the dry season were minimal. The quantitative change of runoff was more readily portrayed with cross-sections through the contoured surfaces.  相似文献   
27.
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept.  相似文献   
28.
Hypsometry has been shown to be a useful tool in geomorphic analysis of watersheds with the use of third‐degree polynomial equations to express the hypsometric curve. Despite its usefulness with watersheds in the equilibrium stage, the third‐degree polynomial has been found to be inadequate to describe the hypsometry of Monadnock phase watersheds. Three other equations — a modified third‐degree polynomial with a rational term, a sigmoidal model, and a double exponential — were used to determine hypsometric attributes of 32 Monadnock phase watersheds and compared to the third‐degree polynomial form. The three other equations were found to be better fits for Monadnock phase watersheds than the third‐degree polynomial equation, regardless of which ratio — area or elevation — was plotted as the independent variable. Due to the occasional failure of each functional form to give logical values for hypsometric attributes, the importance of using more than one form equation is discussed. After determining the best‐fit equation for each watershed, the usefulness of hypsometric attributes is discussed in relation to erosion processes within Monadnock phase watersheds.  相似文献   
29.
Preston, Stephen D., Richard B. Alexander, Gregory E. Schwarz, and Charles G. Crawford, 2011. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States. Journal of the American Water Resources Association (JAWRA) 47(5):891‐915. DOI: 10.1111/j.1752‐1688.2011.00577.x Abstract: We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long‐term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales.  相似文献   
30.
ABSTRACT: Baseflow, or water that enters a stream from slowly varying sources such as ground water, can be critical to humans and ecosystems. We evaluate a simple method for estimating base‐flow parameters at ungaged sites. The method uses one or more baseflow discharge measurements at the ungaged site and longterm streamflow data from a nearby gaged site. A given baseflow parameter, such as the median, is estimated as the product of the corresponding gage site parameter and the geometric mean of the ratios of the measured baseflow discharges and the concurrent discharges at the gage site. If baseflows at gaged and ungaged sites have a bivariate lognormal distribution with high correlation and nearly equal log variances, the estimated baseflow parameters are very accurate. We tested the proposed method using long‐term streamflow data from two watershed pairs in the Driftless Area of southwestern Wisconsin. For one watershed pair, the theoretical assumptions are well met; for the other the log‐variances are substantially different. In the first case, the method performs well for estimating both annual and long‐term baseflow parameters. In the second, the method performs remarkably well for estimating annual mean and annual median baseflow discharge, but less well for estimating the annual lower decile and the long‐term mean, median, and lower decile. In general, the use of four measurements in a year is not substantially better than the use of two.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号