首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   31篇
  国内免费   4篇
废物处理   1篇
环保管理   162篇
综合类   10篇
基础理论   4篇
评价与监测   6篇
社会与环境   2篇
  2023年   3篇
  2021年   2篇
  2019年   5篇
  2018年   5篇
  2017年   10篇
  2016年   14篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   6篇
  2008年   8篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有185条查询结果,搜索用时 281 毫秒
91.
We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay‐wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.  相似文献   
92.
Establishing aquatic restoration priorities using a watershed approach   总被引:11,自引:0,他引:11  
Since the passage of the Clean Water Act in 1972, the United States has made great strides to reduce the threats to its rivers, lakes, and wetlands from pollution. However, despite our obvious successes, nearly half of the nation's surface water resources remain incapable of supporting basic aquatic values or maintaining water quality adequate for recreational swimming. The Clean Water Act established a significant federal presence in water quality regulation by controlling point and non-point sources of pollution. Point-sources of pollution were the major emphasis of the Act, but Section 208 specifically addressed non-point sources of pollution and designated silviculture and livestock grazing as sources of non-point pollution. Non-point source pollutants include runoff from agriculture, municipalities, timber harvesting, mining, and livestock grazing. Non-point source pollution now accounts for more than half of the United States water quality impairments. To successfully improve water quality, restoration practitioners must start with an understanding of what ecosystem processes are operating in the watershed and how they have been affected by outside variables. A watershed-based analysis template developed in the Pacific Northwest can be a valuable aid in developing that level of understanding. The watershed analysis technique identifies four ecosystem scales useful to identify stream restoration priorities: region, basin, watershed, and site. The watershed analysis technique is based on a set of technically rigorous and defensible procedures designed to provide information on what processes are active at the watershed scale, how those processes are distributed in time and space. They help describe what the current upland and riparian conditions of the watershed are and how these conditions in turn influence aquatic habitat and other beneficial uses. The analysis is organized as a set of six steps that direct an interdisciplinary team of specialists to examine the biotic and abiotic processes influencing aquatic habitat and species abundance. This process helps develop an understanding of the watershed within the context of the larger ecosystem. The understanding gained can then be used to identify and prioritize aquatic restoration activities at the appropriate temporal and spatial scale. The watershed approach prevents relying solely on site-level information, a common problem with historic restoration efforts. When the watershed analysis process was used in the Whitefish Mountains of northwest Montana, natural resource professionals were able to determine the dominant habitat forming processes important for native fishes and use that information to prioritize, plan, and implement the appropriate restoration activities at the watershed scale. Despite considerable investments of time and resources needed to complete an analysis at the watershed scale, the results can prevent the misdiagnosis of aquatic problems and help ensure that the objectives of aquatic restoration will be met.  相似文献   
93.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   
94.
ABSTRACT: The Grand and Saugeen Rivers in southern Ontario were chosen for study as pilot watersheds under the Pollution From Land Use Activities Reference Group (PLUARG) study. The pilot watersheds have adjacent headwater areas and are physically similar in geology, physiography, and climate. Significant differences in water quality between the watersheds at their outlets are attributed to land use and population differences. The major pollutant sources in the two pilot watersheds were identified as trace elements from urban runoff and point source discharges; phosphorus from agricultural and urban runoff and private waste disposal; chloride from transportation corridors; and sediment and nitrogen from agricultural runoff. Yields at the watershed outlets were similar for suspended sediment and two to three times as high in the Grand River for phosphours, nitrogen, chloride, and lead. The higher phosphorus and nitrogen levels were attributed to larger point source inputs and the higher proportion of agricultural activity, comprising 75 percent of the Grand River basin compared to 64 percent in the Saugeen River basin. Similarly, the higher chloride and lead levels were attributed to an order of magnitude larger population and three times as much urban land in the Grand River basin compared to the Saugeen River basin.  相似文献   
95.
ABSTRACT: The Agricultural Drainage and Pesticide Transport model was used to examine the relationship between fish and suspended sediment in the context of a proposed total maximum daily load (TMDL) in two agricultural watersheds in Minnesota. During a 50‐year simulation, Wells Creek, a third‐order cold water stream, had an estimated 1,164 events (i.e., one or more consecutive days of estimated sediment loading) and the Chippewa River, a fourth‐order warm water stream, had 906 events of measurable suspended sediment. Sublethal thresholds were exceeded for 970 events and lethal levels for 194 events for brown trout in Wells Creek, whereas adult nonsalmonids would have experienced sublethal levels for 923 events and lethal levels for 241 events. Sublethal levels were exceeded for 756 events and lethal thresholds were exceeded for 150 events in the Chippewa River. Nonsalmonids would have experienced 15 events of mortality between 0 and 20 percent in Wells Creek. In the Chippewa River, there were 35 events of mortality between 0 and 20 percent and one event in which mortality could have exceeded 20 percent. The Minnesota Pollution Control Agency has proposed listing stream reaches as being impaired for turbidity at 25 NTU, which is approximately 46 mg suspended sediment/1. We estimated that 46 mg/1 would be exceeded approximately 30 days in a year (d/yr) in both systems. A TMDL of 46 mg SS/1 may be too high to ensure that stream fishes are not negatively affected by suspended sediment. We recommend that an indicator incorporating the duration of exposure be applied.  相似文献   
96.
ABSTRACT: Using a Geographic Information System (GIS), a method is presented to develop a spatially explicit time series of land use in an urbanizing watershed. The method is prefaced on the existence of independent observations of land use at different times and data that describes the spatial‐temporal land use transition characteristics of the watershed between these two points in time. A method is then presented to generalize the TR‐55 graphical method, a common lumped hydrologic model for estimating peak discharge, for use in a spatially explicit scheme. This scheme predicts peak discharge throughout a watershed, rather than at a single selected watershed outlet. Coupling these two methods allows the engineer to model both the temporal and spatial evolution of peak discharge for the watershed. An illustrative watershed in a suburban area of Washington, DC is selected to demonstrate the methods. The model results from these analyses are presented graphically to highlight the complex features in peak discharge behavior that exist both spatially, as a function of position within the watershed drainage network, and temporally, as the watershed undergoes urbanization. These features are not commonly noted in most hydrologic analyses but are captured in these analyses because of the high spatial and temporal resolution of the methods presented. The physical implications of the modeled results are discussed in the context of the information content of a stream gauge located at the overall outlet of the illustrative watershed. This work shows that the common practice of transposition of gauge information to locations internal to the watershed would neglect internal variability in peak discharge behavior, and could potentially lead to the determination of inappropriate design discharges.  相似文献   
97.
ABSTRACT: Streamflow data for water years 1978–84 were evaluated to identify streamflow characteristics for 13 small watersheds (0.46–7.00 mi2) in the Blue Mountains of eastern Oregon and to determine differences among grazing intensities and vegetation types. The ranges for mean annual water yields, peak flows, and 7-day low flows for the 13 watersheds were 5.5–28.1 inches, 2.0–34.7 cfsm, and 0.006–0.165 cfsm, respectively. Two classes of vegetation were evaluated: (1) western larch-Douglas-fir (nine watersheds) and (2) other (four watersheds representing fir-spruce, lodgepole pine, ponderosa pine, and mountain meadow). The means for annual peak flows and the slopes of the flow.duration curve were significantly different (p=0.05) for the two vegetation classes; differences in mean annual water yield were marginallysignificant(0.05< p <0.10). After they were adjusted for precipitation, the means for annual water yield, peak flows, and slopes of the flow-duration curve were significantly different for the two vegetation classes; differences in the means for annual 7-day low flows were marginally significant. The western larch-Douglas-fir group had somewhat lower water yields but, overall, tended to have more favorable streamfiow characteristics including lower peak flows, higher low flows, and more evenly distributed flow regimes (flatter flow-duration curves) than the “other” class. Four levels of grazing intensity had no effect on streamilow characteristics.  相似文献   
98.
ABSTRACT: A regression analysis using a generalized least squares approach on flow data from the driftless area of Wisconsin indicates that the ratio of drainage area to time-to-peak is a good predictor of flood quantiles. The estimation of time-to-peak (or some other measure of basin response time) requires direct measurement of river stage and possibly rainfall at the site of which the quantiles are to be estimated. The cost-effectiveness of such an approach must yet be determined.  相似文献   
99.
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow.  相似文献   
100.
Annual expenditures by the federal government in the United States for agricultural conservation programs increased about 80 percent with passage of the 2002 Farm Bill. However, environmental benefits of these programs have not been quantified. A national project is under way to estimate the effect of conservation practices on environmental resources. The watershed models intended for use in that project are focused on water quantity and quality and have minimal habitat assessment capability. Major impairments to aquatic ecosystems in many watersheds consist of physical habitat degradation, not water quality, suggesting that current models for this national initiative do not address one of the most significant aspects of aquatic ecosystem degradation. Currently used models contain some components relevant to aquatic habitat, and this paper describes specific components that should be added to allow rudimentary stream habitat quality assessments. At least six types of variables could be examined for ecological impact: land use, streamflow, water temperature, streambed material type, large woody debris, and hydraulic conditions at base flow. All of these variables are influenced by the presence, location, and quality of buffers. Generation of stream corridor ecological or habitat quality indices might contribute to assessments of the success or failure of conservation programs. Additional research is needed to refine procedures for combining specific measures of stream habitat into ecologically meaningful indices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号