首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   63篇
  国内免费   144篇
安全科学   23篇
废物处理   10篇
环保管理   199篇
综合类   475篇
基础理论   232篇
污染及防治   24篇
评价与监测   73篇
社会与环境   121篇
灾害及防治   31篇
  2024年   6篇
  2023年   17篇
  2022年   41篇
  2021年   25篇
  2020年   29篇
  2019年   33篇
  2018年   29篇
  2017年   33篇
  2016年   40篇
  2015年   43篇
  2014年   43篇
  2013年   70篇
  2012年   43篇
  2011年   65篇
  2010年   66篇
  2009年   55篇
  2008年   53篇
  2007年   48篇
  2006年   63篇
  2005年   48篇
  2004年   33篇
  2003年   45篇
  2002年   40篇
  2001年   27篇
  2000年   26篇
  1999年   27篇
  1998年   15篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1983年   4篇
  1981年   2篇
  1980年   8篇
  1979年   4篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有1188条查询结果,搜索用时 31 毫秒
781.
ABSTRACT: In the south-central interior of British Columbia, the summer and fall of 1987 were very dry. Streamflow was extremely low throughout the region, and an extended rainless period coincided with the onset of the winter dormant period. During a five-day rainless period from October 9 to October 13, which should have been a period of declining streamflow in all watersheds, 19 of 31 small forested watersheds having suitable natural flow record experienced increasing discharge. The data is reviewed and analyzed with an initial attempt made to explain the streamflow changes among the various watersheds quantitatively. The only explanation for the widespread increases in streamflow in the region during this dry period is that greatly reduced transpiration, as the vegetation went dormant, permitted increased volumes of water in the soil to drain into surface streams rapidly enough to be recorded as increased discharge in 61 percent of the study streams.  相似文献   
782.
A methodology is described that allows determination of instream flow requirements for maintenance of riparian trees. Tree-ring data revealed strong relationships between tree growth and stream flow volume for riparian species at Rush Creek, an alluvial stream within an arid setting; these relationships allowed development of models that predict growth rates from hydrologic variables. The models can be used to assess instream flow requirements under the assumption that certain levels of growth are necessary to maintain the population. There is a critical need for development and use of instream flow methodologies for riparian vegetation, since present methodologies focus on needs of aquatic animals (e.g., fish) and may underestimate needs of the entire riparian ecosystem.  相似文献   
783.
he influence of woody vegetation on the reliability of a sandy levee was investigated using field data in seepage and slope stability analyses. Field data were collected from selected sites within a 10-km segment of a channel levee on the Sacramento River near Elkhorn, California. Root architecture and distribution were determined using the profile-wall method in which root cross sections were exposed in the vertical wall of an excavated trench. Transects running both parallel and perpendicular to the crest of the levee were excavated at six sites. Each site was dominated by different plant species: five sites were adjacent to trees or woody shrubs, while one supported only herbaceous growth. Lateral plant roots were primarily restricted to, and modified, the near-surface soil horizons to a depth of approximately 1 meter. Root area ratios (RARs) did not exceed 2.02 percent and generally decreased exponentially with depth. At depths greater than 20 cm, mean RARs for sites dominated by wood species were not significantly different from the mean RAB for the herbaceous site. No open voids clearly attributable to plant roots were observed. Roots reinforced the levee soil and increased shear resistance in a measurable manner. Infinite slope and circular arc stability analyses were performed on the landward and riverward slopes under different hydraulic loading conditions. Infinite slope analyses indicated increasing root area ratio from 0.01 percent to 1 percent increased the factor of safety from less than one to more than seven. Circular arc analyses indicated that even the lower measured root concentrations sufficed to increase safety factors for arcs with maximum depths of about 1 m from less than one to about 1.2. Our findings suggest that allowing woody shrubs and small trees on levees would provide environmental benefits and would enhance structural integrity without the hazards associated with large trees such as wind-throwing.  相似文献   
784.
ABSTRACT: Vegetation management aimed at increasing the amount of usable water yield from precipitation falling on upstream watersheds may be one alternative for supplementing water supplies. Indications are that water yields can be increased within a multiple-use framework, which can benefit or at least be compatible with other natural resource objectives. Through changes in vegetation on a watershed, it is possible to reduce evaporation losses only slightly but significantly increase streamflow runoff. In an assessment of potentials for water yield improvement in Arizona, experimental studies on various vegetation zones are reviewed. Because of either limited acreage or limited rainfall, the alpine, grassland, aspen, and desert shrub vegetation zones are not realistic management areas for Arizona. Furthermore, manipulation of pinyon-juniper woodlands does not appear promising at this time. Conversion of chaparral to grasses and forbs does appear to be a possible treatment for water yield improvement, as well as various silvicultural treatments of mixed conifer and ponderosa pine forests. Streamflow increases are given for experiments in chaparral, mixed conifer, and ponderosa pine vegetation zones. However, complete information on possible constraints for these zones is not currently available. Specific assessment of water yield management options for riparian vegetation is difficult to make, due to incomplete knowledge of water yield changes and other constraints for this vegetation zone. Prior to the final adoption of management practices, results of experimental work must be coupled with economic and social considerations.  相似文献   
785.
Disturbance of flora from utility construction tends to generate new plant growth. This growth changes productivity, diversity, and stability. Although the enhancement of vegetation may balance out the biomass destroyed by the original disturbance, it often adversely affects the quality of the vegetation. Percentage composition of the dominant long-lived perennials combined with quantitative measures are used to assess longterm effects of utility corridor construction. Differential effects of enhancement of vegetation are found along road edges, enhancement under wires of powerlines, and over trenches dug for pipelines. Areas under powerline pylons seem to receive the greatest damage and also show the most variable recovery of vegetation. Significant recovery rates are noticeable where the time span between year of construction has allowed for considerable regrowth of the older corridor. Recovery rates depend on soil type, landform, and other physical features of the disturbed sites. Drastic disturbance in one area or transect site may impede vegetation recovery, whereas slight disturbance might enhance vegetation in another, tending to offset the effect of the drastic disturbance. Disturbed areas and control areas may appear to have similar vegetation covers, biomasses, and densities, but these similarities often vanish when one examines qualitative aspects, such as proportion of long-lived species and presence of characteristic dominants.  相似文献   
786.
ABSTRACT: A common problem encountered during regional planning and development of ground water dependent communities is the difficulty in deciding which areas should be preserved for aquifer recharge purposes. This paper describes the development and application of a digital overlay technique for objective evaluation and ranking of potential infiltration and potential recharge areas. Equations are developed which relate the hydrologic parameters pertaining to infiltration and recharge in a surface aquifer-confined aquifer system. These equations make use of discrete data, yet by application in a digital overlay technique results are obtained in the form of spatial distributions in order for regional trends and conditions to be examined. An application of this procedure to the 551,000 acre region of central Florida, known as the Green Swamp, is discussed. The results are presented in the form of computer generated maps which identify and rank areas of potential recharge to the aquifer system.  相似文献   
787.
788.
ABSTRACT: Policies to encourage brush management are under consideration as a means to address the water scarcity issue in Texas. Additional water can be generated by treating some of the 100-million-plus acres of brush-infested rangelands in Texas. Evidence of water yield benefits are, however, tentative at this time. Economic investigations based on available data show the potential desirability of brush management but also show benefits to be critically dependent on added water yield, value, and cost-sharing policy. Wildlife, water rights, and environmental issues are also important considerations. The lack of research information on likely impacts makes it difficult to choose among alternative policies for encouraging brush management. More research on this potential opportunity is needed.  相似文献   
789.
Procedures are discussed for the interpretation of historical aerial photographs for salt-marsh vegetation mapping, as are techniques for computer-assisted analysis of digital vegetation maps. The mappings indicate an increase in the coverage by the low marsh speciesSpartina alterniflora Loisel. at three marsh sites studied in photographs from the period 1934–1981. It is hypothesized that changes in salt-marsh vegetation may be in response to natural tidal fluctuations or to management practices.  相似文献   
790.
ABSTRACT: This analysis relates physical-process, ecological, and economic models to: (1) analyze the instream water temperatures with respect to existing and proposed riparian vegetation under natural conditions; (2) use these water temperatures to determine salmon and steel-head fish populations that were based upon actual field count and known temperature preference data; and (3) determine the economic worth based upon the estimated carrying capacity of the river, the estimated number of return spawners, and the economic value of commercially caught and sport-caught salmon and steelhead. The economic evaluations are in accordance with procedures outlined by the U.S. Water Resources Council (1983).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号