首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16800篇
  免费   1197篇
  国内免费   3447篇
安全科学   1280篇
废物处理   272篇
环保管理   4591篇
综合类   9316篇
基础理论   1842篇
环境理论   1篇
污染及防治   1193篇
评价与监测   1329篇
社会与环境   1156篇
灾害及防治   464篇
  2024年   75篇
  2023年   240篇
  2022年   407篇
  2021年   437篇
  2020年   507篇
  2019年   415篇
  2018年   401篇
  2017年   593篇
  2016年   702篇
  2015年   802篇
  2014年   786篇
  2013年   1112篇
  2012年   1163篇
  2011年   1290篇
  2010年   942篇
  2009年   955篇
  2008年   733篇
  2007年   1199篇
  2006年   1124篇
  2005年   889篇
  2004年   751篇
  2003年   787篇
  2002年   652篇
  2001年   539篇
  2000年   508篇
  1999年   446篇
  1998年   319篇
  1997年   310篇
  1996年   277篇
  1995年   242篇
  1994年   202篇
  1993年   188篇
  1992年   136篇
  1991年   113篇
  1990年   90篇
  1989年   91篇
  1988年   79篇
  1987年   76篇
  1986年   48篇
  1984年   52篇
  1983年   59篇
  1982年   60篇
  1981年   79篇
  1980年   89篇
  1979年   80篇
  1978年   53篇
  1977年   51篇
  1973年   44篇
  1972年   40篇
  1971年   61篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
431.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   
432.
Traditional knowledge and practices are important in prudent resource use and biodiversity conservation. The implications of modernization and changing lifestyle are discussed in the context of agriculture and resource use, the two sectors in which maximum modernization has occurred. The information was gathered through observations and structured interviews over three years (July 1996 to July 1999) of field work in the western Himalaya. It was observed that forest based subsistence agriculture has given way to the market dependant cash crop cultivation. That apart from loss of genetic diversity, has also resulted in the degradation of forests. The use of wild plants in the day-to-day activities has also declined and dependence on high value market products has increased. Currently, wild plants are used only if no other cheap substitute is available in the market or if the use is economically beneficial to the people. Thus, the knowledge gathered through ages of experience is eroding because of the activities geared for short-term economic benefits which, in long run, may not be sustainable.  相似文献   
433.
The article contributes to a discussion on two global issues on water: water resources management, and water supply and sanitation. Focusing on Europe, it traces the legal roots of current systems in history: as a resource, water is considered as a common property, rather than a market good; while as a public service it is usually a commodity. Public water supply and sanitation technologies and engineering have developed under three main paradigms: quantitative and civil engineering; qualitative and chemical/sanitary engineering (both on the supply side); and the most recent one, environmental engineering and integrated management (on the demand side). The cost of public drinking water is due to rise sharply in view of the two‐fold financial challenge of replacing an ageing infrastructure and keeping up with ever‐rising environmental and sanitary quality standards. Who will pay? Government subsidies, or water users? The author suggests that apparent successes with privatisation may have relied heavily on hidden government subsidies and/or the healthy state of previously installed water infrastructure: past government subsidies are still felt for as long as the lifetime of the infrastructure. The article stresses the importance of public participation and decentralized local management of water and sanitation services. Informing and involving users in water management decisions is seen as an integral part of the ‘ethics’ side of the crucial three E's (economics, environment, ethics). The article strongly argues for municipal provision of water services, and hopes that lessons learnt and solutions found in the European experience may serve water services management efforts in other regions of the world.  相似文献   
434.
本文对水危机及全球水源状况进行了分析,为保护人类水资源与生态环境进行了有益的探索。  相似文献   
435.
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border.  相似文献   
436.
ABSTRACT: The time to hydrograph peak of a watershed basin has been found to correlate with various statistical attributes (e.g., skewness and kurtosis) of its hypsometric curve (treated as probability distribution). This paper presents a theoretical travel time that is conceptually analogous to the time to hydrograph peak and can be calculated directly from the hypsometric curve of a watershed basin based on gravity and acceleration. The theoretical travel times for 23 selected watersheds in the United States are found to correlate significantly with their corresponding hypsometric attributes. In addition, the theoretical travel times are consistent with the times of concentration estimated from the Federal Aviation Administration method. Thus, this paper offers a simple theoretical explanation to the empirically identified linkage between time to hydrograph peak and hypsometric attributes. This theoretical travel time can provide an alternative way of characterizing the effects of basin morphometry on hydrologic response.  相似文献   
437.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   
438.
ABSTRACT: Quantifying natural variability, uncertainty, and risk with minimal data is one of the greatest challenges facing those engaged in water quality evaluations, such as development of total maximum daily loads (TMDL), because of regulatory, natural, and analytical constraints. Quantification of uncertainty and variability in natural systems is illustrated using duration curves (DCs), plots that illustrate the percent of time that a particular flow rate (FDC), concentration (CDC), or load rate (LDC; “TMDL”) is exceeded, and are constructed using simple derived distributions. Duration curves require different construction methods and interpretations, depending on whether there is a statistically significant correlation between concentration (C) and flow (Q), and on the sign of the C‐Q regression slope (positive or negative). Flow DCs computed from annual runoff data vary compared with an FDC developed using all data. Percent exceedance for DCs can correspond to risk; however, DCs are not composed of independent quantities. Confidence intervals of data about a regression line can be used to develop confidence limits for the CDC and LDC. An alternate expression to a fixed TMDL is suggested as the risk of a load rate being exceeded and lying between confidence limits. Averages over partial ranges of DCs are also suggested as an alternative expression of TMDLs. DCs can be used to quantify watershed response in terms of changes in exceedances, concentrations, and load rates after implementation of best management practices.  相似文献   
439.
ABSTRACT: Subterranean ecosystems harbor globally rare fauna and important water resources, but ecological processes are poorly understood and are threatened by anthropogenic stresses. Ecosystem analyses were conducted from 1997 to 2000 in Cave Springs Cave, Arkansas, situated in a region of intensive land use, to determine the degree of habitat degradation and viability of endangered fauna. Organic matter budgeting quantified energy flux and documented the dominant input as dissolved organic matter and not gray bat guano (Myotis grisescens). Carbon/nitrogen stable isotope analyses described a trophic web of Ozark cavefish (Amblyopsis rosae) that primarily consumed cave isopods (Caecidotea stiladactyla), which in turn appeared to consume benthic matter originating from a complex mixture of soil, leaf litter, and anthropogenic wastes. Septic leachate, sewage sludge, and cow manure were suspected to augment the food web and were implicated in environmental degradation. Water, sediment, and animal tissue analyses detected excess nutrients, fecal bacteria, and toxic concentrations of metals. Community assemblage may have been altered: sensitive species‐grotto salamanders (Typhlotriton spelaeus) and stygobro‐mid amphipods—were not detected, while more resilient isopods flourished. Reduction of septic and agricultural waste inputs may be necessary to restore ecosystem dynamics in this cave ecosystem to its former undisturbed condition.  相似文献   
440.
ABSTRACT: Most watershed water quality simulation models require the user to specify pollutant buildup and washoff rate parameters for pollutants, by land use. Buildup and washoff rates are difficult to measure directly, and only limited guidance and few observed data are available from the literature. Many studies, however, report storm event mean concentrations (EMCs). These EMCs must arise as a result of the buildup and washoff processes, but typically represent the net contribution from a variety of pervious and impervious surfaces. This paper explores the relationship between EMCs and buildup/washoff parameters. An assumption of the mathematical form of the buildup/washoff relationship gives an algebraic expression for the EMC consistent with model assumptions. This yields techniques to separate observed EMCs into contributions from different land uses and from pervious and impervious surfaces. Given this relationship, numerical optimization may be used to estimate site specific values of buildup and washoff parameters from observed storm EMCs for use in modeling. Use of this approach helps ensure that model parameters are consistent with observed data, providing a rational starting point for final model calibration. Several site examples demonstrate use of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号