首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   95篇
  国内免费   165篇
安全科学   1篇
废物处理   2篇
环保管理   621篇
综合类   354篇
基础理论   69篇
污染及防治   12篇
评价与监测   55篇
社会与环境   62篇
灾害及防治   7篇
  2024年   4篇
  2023年   11篇
  2022年   14篇
  2021年   27篇
  2020年   26篇
  2019年   34篇
  2018年   15篇
  2017年   34篇
  2016年   36篇
  2015年   52篇
  2014年   27篇
  2013年   63篇
  2012年   62篇
  2011年   51篇
  2010年   42篇
  2009年   54篇
  2008年   39篇
  2007年   43篇
  2006年   68篇
  2005年   48篇
  2004年   44篇
  2003年   54篇
  2002年   56篇
  2001年   30篇
  2000年   38篇
  1999年   26篇
  1998年   21篇
  1997年   19篇
  1996年   13篇
  1995年   16篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1183条查询结果,搜索用时 15 毫秒
181.
艾比湖流域不同植物群落土壤呼吸研究   总被引:8,自引:1,他引:7  
利用开路式土壤碳通量测量系统LI-8100测定艾比湖流域4种植物群落土壤呼吸速率日变化,分析土壤温度、湿度和气温以及空气相对湿度对土壤呼吸速率的影响.结果表明:胡杨、梭梭、芦苇和盐节木4种植物群落的土壤呼吸速率日变化基本呈单峰曲线.胡杨、梭梭和盐节木群落的土壤呼吸速率与地上10 和150 cm处气温均表现为极显著相关.除芦苇群落外,各植物群落土壤呼吸速率与不同深度土壤温度呈极显著负相关.除沙地梭梭群落外,胡杨、盐渍地梭梭、芦苇和盐节木群落的土壤呼吸速率与地上10和150 cm处的空气相对湿度均呈极显著负相关.不同植物群落土壤呼吸速率与土壤湿度呈极显著负相关.多元逐步回归拟合的回归模型均达极显著水平,由土壤温度和湿度共同拟合出的回归模型能够解释土壤呼吸速率变化87%以上的原因.不同植物群落土壤呼吸差异原因的分析显示,细菌、真菌、放线菌以及根系干质量不是造成植物群落土壤呼吸差异的主要原因.   相似文献   
182.
ABSTRACT: We analyzed the type of hydrologic adjustments resulting from flow regulation across a range of dam types, distributed throughout the Connecticut River watershed, using two approaches: (1) the Index of Hydrologic Alteration (IHA) and (2) log‐Pearson Type III flood frequency analysis. We applied these analyses to seven rivers that have extensive pre‐and post‐disturbance flow records and to six rivers that have only long post‐regulation flow records. Lastly, we analyzed six unregulated streams to establish the regional natural flow regime and to test whether it has changed significantly over time in the context of an increase in forest cover from less than 20 percent historically to greater than 80 percent at present. We found significant hydrologic adjustments associated with both impoundments and land use change. On average, maximum peak flows decrease by 32 percent in impounded rivers, but the effect decreases with increasing flow duration. One‐day minimum low flows increase following regulation, except for the hydro‐electric facility on the mainstem. Hydrograph reversals occur more commonly now on the mainstem, but the tributary flood control structures experience diminished reversals. Major shifts in flood frequency occur with the largest effect occurring downstream of tributary flood control impoundments and less so downstream of the mainstem's hydroelectric facility. These overall results indicate that the hydrologic impacts of dams in humid environments can be as significant as those for large, multiple‐purpose reservoirs in more arid environments.  相似文献   
183.
ABSTRACT: A “synthetic paired basin” technique that combines hydrologic monitoring and watershed modeling proves to be a useful tool in detecting hydrologic change in creeks draining basins undergoing urbanization. In this approach, measured stream flow following subbasin treatment (a period of urbanization) is compared with flow from a control subbasin over the same time period. The control subbasin is the pretreatment subbasin itself as represented by a well‐calibrated hydrologic model that is input with post‐treatment meteorological data. The technique is illustrated for stream monitoring sites at the outlets of two high‐resource sub‐basins in the Bear Creek basin of King County, Washington. Application of this technique holds promise to provide earlier warning of cumulative, human impacts on aquatic resources and to better inform adaptive watershed management for resource protection.  相似文献   
184.
ABSTRACT: Riparian buffers have potential for reducing excess nutrient levels in surface water. Spatial variation in riparian buffer effectiveness is well recognized, yet researchers and managers still lack effective general tools for understanding the relevance of different hydrologic settings. We present several terrain‐based GIS models to predict spatial patterns of shallow, subsurface hydrologic flux and riparian hydrology. We then link predictions of riparian hydrology to patterns of nutrient export in order to demonstrate potential for augmenting the predictive power of land use/land cover (LU/LC) maps. Using predicted hydrology in addition to LUILC, we observed increases in the explained variation of nutrient exports from 290 sites across Lower Michigan. The results suggest that our hydrologic predictions relate more strongly to patterns of nutrient export than the presence or absence of wetland vegetation, and that in fact the influence of vegetative structure largely depends on its hydrologic context. Such GIS models are useful and complimentary tools for exploring the role of hydrologic routing in riparian ecosystem function and stream water quality. Modeling efforts that take a similar GIS approach to material transport might be used to further explore the causal implications of riparian buffers in heterogeneous watersheds.  相似文献   
185.
ABSTRACT: We tracked vegetation succession on a debris‐flow deposit in Oregon's Coast Range to examine factors influencing the development of riparian plant communities following disturbance. Plots were stratified across five areas of the deposit (bank slump, seep, upper and lower sediment wedge, log jam) the first growing season after debris flow. At six times during the next ten years we estimated cover of vascular plants and tallied density of woody plants. Plant colonization occurred within two years. Total cover increased two‐to seven‐fold on the five areas within three years. Red alder and salmonberry were the dominant species, although weedy herbs persisted where woody species were lacking. Ordination of cover data showed that the five areas remained floristically distinct over time, while undergoing similar shifts related to the increasing dominance of alder and salmonberry. Rapid height growth of alder allowed it to outcompete salmonberry and effectively capture most areas by the tenth year, even where sprouts from transported rhizomes gave salmonberry an early advantage. Our results suggest that successional patterns were influenced by substrate variability, species composition of initial colonizers, propagule sources and their distribution, and species life‐history traits such as growth rate, competitive ability, and shade tolerance.  相似文献   
186.
ABSTRACT: The State of Texas has initiated the development of a Total Maximum Daily Load program in the Bosque River Watershed, where point and nonpoint sources of pollution are a concern. Soil Water Assessment Tool (SWAT) was validated for flow, sediment, and nutrients in the watershed to evaluate alternative management scenarios and estimate their effects in controlling pollution. This paper discusses the calibration and validation at two locations, Hico and Valley Mills, along the North Bosque River. Calibration for flow was performed from 1960 through 1998. Sediment and nutrient calibration was done from 1993 through 1997 at Hico and from 1996 through 1997 at Valley Mills. Model validation was performed for 1998. Time series plots and statistical measures were used to verify model predictions. Predicted values generally matched well with the observed values during calibration and validation (R2≥ 0.6 and Nash‐Suttcliffe Efficiency ≥ 0.5, in most instances) except for some underprediction of nitrogen during calibration at both locations and sediment and organic nutrients during validation at Valley Mills. This study showed that SWAT was able to predict flow, sediment, and nutrients successfully and can be used to study the effects of alternative management scenarios.  相似文献   
187.
ABSTRACT: Environmental background levels of Pb were measured in ponds, river waters, sediments, suspended sediments, rocks, and air particulates within the Kankakee watershed during the period of 1995 to 1999. Stable isotopic Pb distinguished airborne Pb and its incorporation into riverine wetland sediments from geogenic Pb measured in river sediments. The provenance of the naturally‐occurring Pb is from carbonate bedrock and contributes comparable concentrations in riverbank sediments (25.9–30.4 mg kg?1) as Pb found in wetland sediments (18.6–24.8 mg kg?1). Estimates of anthropogenic Pb contributions from airfall into the Kankakee wetlands were found to be near 0.43–0.71 Bq cm?2 yr?1 during 1995 to 1999. While leachable Pb data suggests the uppermost layers of pond sediments were disturbed, 210Pb analyses from undisturbed sedimentation suggests Pb‐bearing sediments accumulate approximately 0.46–0.51 cm yr?1 in the ponds within the riparian zones. Transboundary Pb pollution from aerosols of industrial Pb across the Great Lakes occurs, but Pb isotopy indicates that the Pb concentrations are comparable to natural concentrations of Pb in both waters and sediments within the Kankakee watershed.  相似文献   
188.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   
189.
ABSTRACT: We investigated spatial and temporal relationships among surface and subsurface watershed attributes and stream nutrient concentrations in urbanizing Johnson Creek watershed in northern Oregon. We sampled stream water at eight urban and five nonurban locations from March 1998 through December 1999. We sampled eight wells distributed over the two primary aquifers in the watershed. Using a Geographic Information System (GIS), percentages of landuse attributes within a radius of 30, 91, and 152 m from each sample site were quantified. We analyzed relationships between (1) nutrient concentrations and percentage cover of different landuse attributes, and (2) nutrient concentrations and underlying hydrologic units. We did not find a significant relationship between ground water chemistry and stream water chemistry. We found elevated levels of phosphorus (P) concentrations correlated with urban landuse, while higher nitrogen (N) concentrations were correlated with nonurban (primarily agricultural) landuse. We concluded that elevated levels of N in nonurban areas of Johnson Creek watershed were associated with agricultural practices. We further concluded that urban development factors such as increases in storm drains, dry wells, and impermeable surfaces may be responsible for higher input of P to the stream in urbanizing areas of the Johnson Creek watershed.  相似文献   
190.
ABSTRACT: Improved sampling techniques are needed to increase the accuracy of pebble‐count particle‐size distributions used for stream studies in gravel‐bed streams. However, pebble counts are prone to operator errors introduced through subjective particle selection, serial correlation, and inaccurate particle‐size measurements. Errors in particle‐size measurements can be minimized by using a gravel template. Operator influence on particle selection can be minimized by using a sampling frame, 60 by 60 cm, in which sampling points are identified by the cross points of thin elastic bands. Serial correlation can be minimized by adjusting the spacing between the cross points and setting it equal to the dominant large particle size (=D95). In a field test in a cobble‐bed stream, the sampling frame developed in this study produced slightly coarser size distributions, particularly in the cobble range, than the traditional heel‐to‐toe walk that selects particles with a blind touch at the tip of the boot. The sampling frame produced more similar sampling results between two operators than heel‐to‐toe walks. The difference between the two sampling methods is attributed to an unbiased selection of fine and coarse particles when using the sampling frame.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号