首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   115篇
  国内免费   215篇
安全科学   25篇
废物处理   4篇
环保管理   658篇
综合类   456篇
基础理论   173篇
污染及防治   21篇
评价与监测   76篇
社会与环境   73篇
灾害及防治   16篇
  2024年   5篇
  2023年   12篇
  2022年   25篇
  2021年   37篇
  2020年   36篇
  2019年   41篇
  2018年   23篇
  2017年   43篇
  2016年   46篇
  2015年   66篇
  2014年   42篇
  2013年   85篇
  2012年   78篇
  2011年   66篇
  2010年   57篇
  2009年   76篇
  2008年   54篇
  2007年   60篇
  2006年   90篇
  2005年   59篇
  2004年   57篇
  2003年   65篇
  2002年   61篇
  2001年   35篇
  2000年   40篇
  1999年   36篇
  1998年   24篇
  1997年   25篇
  1996年   15篇
  1995年   20篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   7篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   10篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1502条查询结果,搜索用时 31 毫秒
991.
ABSTRACT: Watershed classification using multivariate techniques requires the incorporation of continuous datasets representing controlling environmental variables. Often, out of convenience and availability rather than importance to the structure of the system being modeled, the environmental data used originate from a variety of sources and scales. To demonstrate the importance of appropriate environmental data selection, classifications of six‐digit hydrologic units (1:24,000) across selected geographic areas within the Interior Columbia River Basin were produced. Canonical correspondence analysis was used to select and test environmental variables important in predicting Rosgen stream types and valley bottom classes. Then, hierarchical agglomerative clustering was used to group (classify) watersheds based on these variables. Statistically significant results were derived from the use of organized classification data with presumed predictive relationships to watershed properties, and a random distribution of environmental variables from the same datasets provided similar results. The results contained herein demonstrate that these analysis techniques do not necessarily select meaningful variables from a broad spectrum of data and that significant results are easily generated from randomly associated data. It is suggested that classifications produced using these multivariate techniques, especially when using multi‐scale data or data of unknown significance, are subject to invalid inferences and should be used with caution.  相似文献   
992.
ABSTRACT: A renewed emphasis on source water protection and watershed management has resulted from recent amendments and initiatives under the Safe Drinking Water Act and the Clean Water Act. Knowledge of the impact of land use choices on source water quality is critical for efforts to properly manage activities within a watershed. This study evaluated qualitative relationships between land use and source water quality and the quantitative impact of season and rainfall events on water quality parameters. High levels of specific conductance tended to be associated with dense residential development, while organic carbon was elevated at several forested sites. Turbidity was generally higher in more urbanized areas. Source tracking indicators were detected in samples where land use types would predict their presence. Coliform levels were statistically different at the 95 percent confidence levels for winter versus summer conditions and dry versus wet weather conditions. Other water quality parameters that varied with season were organic carbon, turbidity, dissolved oxygen, and specific conductance. These results indicate that land use management can be effective for mitigating impacts to a water body; however, year‐ round, comprehensive data are necessary to thoroughly evaluate the water quality at a particular site.  相似文献   
993.
ABSTRACT: Water quality and nonpoint source (NPS) pollution are important issues in many areas of the world, including the Inner Bluegrass Region of Kentucky where urban development is changing formerly rural watersheds into urban and mixed use watersheds. In watersheds where land use is mixed, the relative contributions of NPS pollution from rural and urban land uses can be difficult to separate. To better understand NPS pollution sources in mixed use watersheds, surface water samples were taken at three sites that varied in land use to examine the effect of land use on water quality. Within the group of three watersheds, one was predominately agriculture (Agricultural), one was predominately urban (Urban), and a third had relatively equal representation of both types of land uses (Mixed). Nitrogen (N), phosphorus (P), total suspended solids (TSS), turbidity, pH, temperature, and streamflow were measured for one year. Comparisons are made among watersheds for concentration and fluxes of water quality parameters. Nitrate and orthophosphate concentrations were found to be significantly higher in the Agricultural watershed. Total suspended solids, turbidity, temperature, and pH, were found to be generally higher in the Urban and Mixed watersheds. No differences were found for streamflow (per unit area), total phosphorus, and ammonium concentrations among watersheds. Fluxes of orthophosphate were greater in the Agricultural watershed that in the Urban watershed while fluxes of TSS were greater in the Mixed watershed when compared to the Agricultural watershed. Fluxes of nitrate, ammonium, and total phosphorus did not vary among watersheds. It is apparent from the data that Agricultural land uses are generally a greater source of nutrients than the Urban land uses while Urban land uses are generally a greater source of suspended sediment.  相似文献   
994.
ABSTRACT: Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) and floods on the dispersion of coarse bed material in the Stuart‐Takla region, British Columbia, Canada. The dominant annual sediment transporting event in the channels is the snowmelt flood events, with lesser activity usually accomplished during summer floods. Annually in August, the channel bed material is reworked by the Early Stuart sockeye salmon spawning, as the fish excavate the streambed to deposit and bury their eggs. These nesting cavities are called redds. Results from 67 tracer recovery experiments over five years were highly variable, subject to the magnitude of floods and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150 m), and mean depths of burial up to 18 cm. Summer flood events showed somewhat lower rates of mobilization, distances of travel, and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive ‐ up to 100 percent of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14 cm). The amount of vertical mixing of sediment by salmon was often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important implications for the mobility of sediment in the stream. Since any armoring layer formed during high flows throughout the year is subject to the bioturbation of salmon, this suggests that the transport threshold in the creeks remains relatively low. Salmon likely play an integral role in the sediment transport dynamics and annual sediment budget of the lower reaches of these creeks.  相似文献   
995.
Streams, in their natural state, are typically diverse and biologically productive environments. Streams subject to urbanization often experience degradation brought about by the cumulative effects of flow alteration, unsanitary discharge and channelization. One of the water quality parameters affected by urbanization is stream temperature. This study offers a model for predicting the impact of land use change on the temperature of non-regulated streams during extreme events. A stream temperature model was created by considering the gains and losses of thermal energy resulting from radiation, convection, conduction, evaporation and advection. A sensitivity analysis showed that out of 14 variables, shade/transmissivity of riparian vegetation, groundwater discharge, and stream width had the greatest influence on stream temperature. These same three variables are highly influenced by land use. Individual component models were developed to predict how urbanization changes stream width and baseflow discharge. Using 3-D computer modeling, a model was also developed to illustrate the effects of altering the extent and composition of riparian vegetation on streams with different orientations. By modeling these three variables as a function of urbanization, the results became inputs into the stream temperature model. The critical urban stream temperature model (CrUSTe), an aggregation of these four models, allows the prediction of stream temperature change as a result of amount, type and location of urbanization within a watershed. It has the potential to become a valuable tool for environmental managers.  相似文献   
996.
ABSTRACT: A complex watershed-scale water quality simulation model, the Hydrological Simulation Program-FORTRAN (HSPF) model, was calibrated for a 16 km2 catchment. The simulation step size was 0.33 hours with predicted and recorded hydrologic flows compared on an annual and monthly basis during a total calibration period of four years. Unguided numerical optimization when applied alone did not yield a model parameter set with acceptable predictive capability; instead, it was necessary to apply a critical process that included sensitivity analysis, numerical optimization, and testing of derived model parameter sets to evaluate their performance for periods other than those for which they were determined. Using this critical calibration process, the model was proven to have significant predictive capability. Numerical optimization is an aid for model calibration, but it must not be used blindly.  相似文献   
997.
998.
ABSTRACT: Making decisions for environmental management is a complex task due to the multiplicity and diversity of technological choices. Furthermore, the exploitation of natural resources and the preservation of the natural environment imply objectives that are often in conflict within a sustainable development paradigm. Managers and other decision makers require techniques to assist them in understanding strategic decision making. This paper illustrates the use of a multiple‐objective decision‐making methodology and an integrative geographical information system‐based decision‐making tool developed to help watershed councils prioritize and evaluate restoration activities at the watershed level. Both were developed through a multidisciplinary approach. The decision‐making tool is being applied in two watersheds of Oregon's Willamette River Basin. The results suggest that multiple‐objective methods can provide a valuable tool in analyzing complex watershed management issues.  相似文献   
999.
ABSTRACT: The state of Texas passed legislation in 1997 that established a process for developing a 50‐year state water plan through a bottoms‐up approach involving representation from at least 11 recommended special interest groups. Moorhouse Associates Inc. was contracted to develop and implement a Public Participation Plan for the South Central Texas Region. The two goals of the public process were to take planning information out to the public and to provide a format for bringing the public opinion back to the planning group. The overall goal of the project was to provide public input throughout the planning process that will facilitate the development of a water plan that is widely accepted by the public. By using county government to establish focus groups, participation was encouraged from all of the twenty‐one counties in the region. The tools used in the process included an Internet site, surveys, focus groups, public meetings, community group presentations, media communications, and newspaper clippings. The public participation process as implemented, maintained communication throughout the planning process and at key decision points. This ongoing communication helped alleviate an initial uneasiness with the integrated resource planning approach.  相似文献   
1000.
ABSTRACT: Changes in watershed management and policy in Hawaii are an instructive case study on the evolution of resource management from a traditional vertically integrated system, to a segmented central government‐based system, and now towards a community and watershed focus. The rise of European social and economic influences coupled with the precipitous decline in the Hawaiian population in the years following European contact led to the destruction of traditional management structures. Subsequently, the dominance of outside interests in Hawaii society and politics, culminating with the sugar industry, facilitated the unrestricted use and privatization of land and water resources. The post‐World War II era ushered in fundamental changes in Hawaii society and politics including renewed appreciation of traditional management practices. Government policies, increased community interest in resource management, and a renaissance in Hawaiian culture have converged in recent years to facilitate the development of new management structures that draw on both traditional and contemporary management. These structures hold great promise for improving Hawaiian watershed management. Our observations suggest that other jurisdictions may find it productive to examine traditional management and policy structures and try to relate them to contemporary community‐based resource management policies and activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号