首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   151篇
  国内免费   260篇
安全科学   26篇
废物处理   6篇
环保管理   811篇
综合类   565篇
基础理论   110篇
污染及防治   25篇
评价与监测   87篇
社会与环境   77篇
灾害及防治   10篇
  2024年   9篇
  2023年   25篇
  2022年   32篇
  2021年   37篇
  2020年   47篇
  2019年   60篇
  2018年   35篇
  2017年   52篇
  2016年   56篇
  2015年   75篇
  2014年   50篇
  2013年   94篇
  2012年   87篇
  2011年   83篇
  2010年   58篇
  2009年   69篇
  2008年   50篇
  2007年   70篇
  2006年   83篇
  2005年   63篇
  2004年   57篇
  2003年   66篇
  2002年   61篇
  2001年   34篇
  2000年   47篇
  1999年   35篇
  1998年   29篇
  1997年   24篇
  1996年   19篇
  1995年   20篇
  1994年   13篇
  1993年   10篇
  1992年   8篇
  1991年   6篇
  1990年   14篇
  1989年   11篇
  1988年   7篇
  1987年   13篇
  1984年   6篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   12篇
  1979年   11篇
  1977年   6篇
  1975年   7篇
  1974年   7篇
  1973年   5篇
  1972年   5篇
  1971年   9篇
排序方式: 共有1717条查询结果,搜索用时 913 毫秒
821.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   
822.
ABSTRACT: The indexed sequential hydrologic modeling (ISM) methodology is utilized by the Western Area Power Administration as the basis for risk-based estimation of project-dependable hydropower capacity for several federally owned/operated projects. ISM is a technique based on synthetic generation of a series of overlapping short-term inflow sequences obtained directly from the historical record. The validity of ISM is assessed through application to the complex multireservoir hydropower system of the Colorado River basin for providing risk estimates associated with determination of reliable hydrogeneration capacity. Performance of ISM is compared with results from stochastically generated streamflow input data to the Colorado River Simulation System (CRSS). Statistical analysis and comparison of results are based on monthly power capacity, energy generation, and downstream water deliveries. Results indicate that outputs generated from ISM synthetically generated sequences display an acceptable correspondence with those obtained from stochastically generated hydrologic data for the Colorado River Basin.  相似文献   
823.
ABSTRACT: Linear programming is applied to identify the least cost strategy for reaching politically specified phosphorus and total suspended solids reduction targets for the Fox-Wolf river basin in Northeast Wisconsin. The programming model uses data collected on annualized unit reduction costs associated with five categories of sources of phosphorus and total suspended solids discharge in each of the 41 sub-watersheds in the basin to determine the least cost management strategy. Results indicate that: (1) cost-effective nutrient reduction requires careful selection of geographic areas and source categories to address throughout the watershed; (2) agricultural sources are the most cost-effective to address in the basin; and (3) care should be exercised in setting nutrient reduction targets, given that there are likely to be significantly increasing marginal costs of nutrient reduction; the model predicts that lowering the most restrictive target by 33 percent would cut reduction expenditures by about 75 percent. Policy implications of the model include support for the investigation and potential development of institutional arrangements that enable cost-effective nutrient reduction activities to occur, such as the creation of an agency with authority over a given watershed, coordinated watershed management activities, or nutrient trading programs.  相似文献   
824.
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent.  相似文献   
825.
ABSTRACT: Three processes were examined as causing snowpack changes in forest clearings. Two of the three contribute to increases and one counteracts by reducing snowpack. The two that increase snowpack are redistribution and decreased loss to interception. Snow evaporation from a clearing counteracts snowpack increases. Research has indicated that as vegetation density increases, so too does the loss to interception. As snow in the canopy reaches the limit that the canopy can hold (the threshold amount) evaporation increases. Aerodynamics of the forest canopy were studied as well. As timber is cut, wind patterns are disturbed, creating disruptions in the wind velocity gradient depositing snow in openings. This redistribution leads to an increased snow water equivalent and augments runoff. Snow evaporation was shown to increase proportionally with opening size. Evaporation offsets the water yield gains derived from forest cut. It was found that this offset is inclusive to the measurements of water yield changes in experimental forests. An optimal size of harvest block may be five tree heights in width as suggested by numerous studies.  相似文献   
826.
ABSTRACT: Improving the reliability of parametric hydrologic models (sometimes called cenceptual rainfall-runoff models) in the continuous simulation of runoff from ungaged catchments has been frustrated by difficulties in estimating model parameters from catchment characteristics. An underlying problem is that these models use parameters to represent catchments as a whole, whereas data on catchment characteristics are collected at multiple field locations and are difficult to transform into one measure of collective impact. Subdividing the catchment and calibrating a stochastic parametric model to estimate distributions for the parameters that covered the range of observed streamflow values was found to improve the simulations. This paper presents an optimization of the amount of subdivision to use in simulation with a version of the Stanford Watershed Model using available climatological data. The calibration process assumes that catchment heterogeneity introduces errors that can be reduced by calibrating parameters as spatial distributions rather than single values. Calibrations for three diverse small gaged catchments located in California and in Virginia found the optimal number of subdivisions to range from 4 to 25 and the optimal scale to range from 0.3 to 2.1 mi2.  相似文献   
827.
本文应用多层次、二型Fuzzy综台评判方法,对祁连山水源涵养林区的青海云杉林、祁连圆柏林、灌木林和牧坡草地4个不同植被类型进行了森林水文效应的多因子综合评判。结果表明:青海云杉林是该林区涵养水源效应最佳的林型,祁连圆柏林和灌木林次之,牧坡草地不仅蓄水能力差,且有水土流失发生;并提出了各植被类型合理经营的对策,为祁连山水源涵养林的保护、发展和综合利用提供科学依据。  相似文献   
828.
ABSTRACT: A grid cell geographic information system (GIS) is used to parameterize SPUR, a quasi-physically based surface runoff model in which a watershed is configured as a set of stream segments and contributing areas. GIS analysis techniques produce various watershed configurations by progressive simplification of a stream network delineated from digital elevation models (DEM). We used three watershed configurations: ≥ 2nd, ≥ 4th, and ≥ 13th Shreve order networks, where the watershed contains 28, 15, and 1 channel segments with 66, 37, and 3 contributing areas, respectively. Watershed configuration controls simulated daily and monthly sums of runoff volumes. For the climatic and topographic setting in southeastern Arizona the ≥ 4th order configuration of the stream network and contributing areas produces results that are typically as good as the ≥ 2nd order network. However both are consistently better than the ≥ 13th order configuration. Due to the degree of parameterization in SPUR, model simulations cannot be significantly improved by increasing watershed configuration beyond the ≥ 4th order network. However, a range of Soil Conservation Service curve numbers derived from rainfall/runoff data can affect model simulations. Higher curve numbers yield better results for the ≥ 2nd order network while lower curve numbers yield better results for the ≥ 4th order network.  相似文献   
829.
ABSTRACT: Urban storm water data from four catchments near Miami, Florida, were collected and compiled by the U.S. Geological Survey and were used for testing the applicability of deterministic modeling for characterizing storm water flows from small land use areas. The four sites were:
    相似文献   
830.
Infiltration models are based on physical characteristics of the soil and initial soil moisture. For a given soil it is based on the initial soil moisture distribution. A computer simulation model for flood runoff systems (FH-Model) was used to analyze 39 sets of rainfall-runoff data on four small watersheds ranging in size from 17 to 342 square kilometers located in the Yamaska River basin in Quebec. From these analyses, parameters and coefficients have been determined for a water loss (infiltration) equation. A method for determining the loss parameters, using a nonlinear least square curve fitting technique, is presented. Expressions were made to relate the loss parameters to antecedent precipitation. The equations were tested on 11 storm rainfall and runoff events on a watershed located in the same region and close agreements were found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号