首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2456篇
  免费   238篇
  国内免费   831篇
安全科学   156篇
废物处理   165篇
环保管理   130篇
综合类   1919篇
基础理论   543篇
污染及防治   304篇
评价与监测   294篇
社会与环境   9篇
灾害及防治   5篇
  2024年   24篇
  2023年   89篇
  2022年   117篇
  2021年   138篇
  2020年   116篇
  2019年   137篇
  2018年   81篇
  2017年   93篇
  2016年   139篇
  2015年   148篇
  2014年   215篇
  2013年   179篇
  2012年   170篇
  2011年   170篇
  2010年   133篇
  2009年   133篇
  2008年   156篇
  2007年   139篇
  2006年   138篇
  2005年   89篇
  2004年   92篇
  2003年   87篇
  2002年   71篇
  2001年   76篇
  2000年   49篇
  1999年   67篇
  1998年   69篇
  1997年   55篇
  1996年   64篇
  1995年   53篇
  1994年   54篇
  1993年   36篇
  1992年   37篇
  1991年   40篇
  1990年   31篇
  1989年   36篇
  1988年   1篇
  1986年   2篇
  1979年   1篇
排序方式: 共有3525条查询结果,搜索用时 93 毫秒
1.
2.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   
3.
模拟废印刷线路板(WPCB)的热拆解过程,分析热拆解过程中的挥发性有机物(VOCs)组分;利用真实溶剂似导体屏蔽(COSMO-RS)模型对浓度较高的污染物进行量子力学模拟,研究离子液体(ILs)组成单元对目标污染物溶解度的影响差异,分析溶解过程中主导分子间作用力类型,确定优选吸收剂;测定不同溶剂进行溶解性,验证模型适用性.结果表明:①乙酸乙酯和环戊酮是浓度较高的VOCs组分,在240和250℃时浓度分别为43.1,153mg/m3和105,252mg/m3,质量百分比总和分别为76.3%和67.3%.②高表面屏蔽电荷密度分布峰、长烷基链阴阳离子和亲电基团的存在可提高乙酸乙酯和环戊酮在ILs中的溶解度.双三氟甲磺酰基亚胺盐(NTf2-)类ILs是一类优良吸收剂.静电力和范德华力对溶解过程起主导作用.③COSMO-RS模型可定性和半定量用于预测乙酸乙酯和环戊酮的溶解度.  相似文献   
4.
通过水解法在50℃低温条件下合成了锐钛矿型TiO2,使用XRD、FT-IR、BET等方法对TiO2进行了表征,并研究其对水中氟离子的吸附行为。结果表明:所合成锐钛矿型TiO2比表面积达到278.93 m2/g,常温下对氟离子的最大吸附量为30.02 mg/g。吸附过程符合Langmuir等温线模型和准一级动力学模型,是自发性的吸热过程,吸附机理为静电吸引。  相似文献   
5.
为探究锌(Zn)对水稻镉(Cd)累积的影响及其根表铁膜所发挥的作用,选取Cd高累积型水稻品种中9优547(简称"Z547")和Cd低累积型水稻品种金优402(简称"J402"),采用温室水培试验,研究0、2、5、10、15和20 μmol/L等6个Zn浓度下水稻幼苗对Cd的累积效应,以及不同浓度Zn处理对根表铁膜生成量的影响.结果表明:①随着c(Zn)的增加,Z547和J402水稻幼苗生物量均呈先增后减的趋势,分别在c(Zn)为2和10 μmol/L时达到最大值.②Z547和J402水稻幼苗中w(Cd)均呈先降后增的趋势,分别在c(Zn)为5和2 μmol/L时达到最小值;当水稻幼苗中w(Cd)达到最小值时,Z547根和地上部中w(Cd)分别为31.65和11.47 mg/kg,J402根和地上部中w(Cd)分别为22.58和14.36 mg/kg.③不同浓度Zn处理下水稻幼苗各部位中w(Cd)均与根表铁膜中w(Mn)、w(Fe)、w(Fe+Mn)呈显著正相关,高铁膜处理水稻幼苗中w(Cd)显著高于低铁膜处理,表明根表铁膜生成量的增加会促进Cd在水稻幼苗中的累积.研究显示,当c(Zn)较低时,c(Zn)的增加会抑制水稻幼苗对Cd的累积;当c(Zn)较高时,c(Zn)的增加会促进水稻幼苗对Cd的累积,而Zn可通过控制根表铁膜的生成来影响水稻幼苗对Cd的累积.   相似文献   
6.
为了解烟花爆竹燃放对保定市大气污染物和PM2.5中水溶性离子及有机碳(OC)、元素碳(EC)浓度的影响,对保定市春节期间大气污染物和颗粒物组分的浓度特征进行了分析,并评估了烟花爆竹的贡献.结果表明: 2019年春节期间烟花爆竹集中燃放期PM2.5、PM10、SO2、NO2、CO平均浓度比非集中燃放期分别增加了1.3、1.0、1.1、0.4、0.02倍;保定市春节期间禁燃措施施行后,除夕、初一2d污染物平均浓度、最高浓度和高浓度持续时间均明显下降,集中燃放期烟花爆竹燃放对PM2.5、PM10和SO2浓度贡献量从50%左右(2018年、2017年)下降至30%左右(2019年),其中SO2贡献量下降幅度超过PM2.5和PM10;组分分析表明,接待中心站点(主城区)、涿州站点(区县建成区)烟花爆竹燃放期K+、Mg2+、Cl-浓度在水溶性离子中的总占比分别为39.3%、51.1%,比非燃放期的占比显著上升;烟花爆竹燃放对PM2.5中K+、Mg2+、Cl-浓度贡献率在50%以上,其中对K+贡献占比高达89.0%,涿州站点SO42-、K+、Mg2+、Cl-的贡献量分别是接待中心站点的2.2、2.1、1.9、1.8倍,燃放期硫氧化率(SOR)、氮氧化率(NOR)相比于非燃放期均有一定程度的升高;集中燃放期OC、EC浓度较非集中燃放期分别升高了2.5、2.1倍,烟花爆竹燃放对OC影响大于EC.  相似文献   
7.
以城镇污水处理厂A2/O工艺的回流污泥作为接种污泥,在序批式反应器(SBR)中培养好氧颗粒污泥(AGS),探究Ni2+对AGS系统的影响.结果表明:在25℃的条件下,50d左右培养出成熟的AGS,其形态多呈球状或椭球状,外表分布着少量丝状菌,颗粒污泥粒径主要在2~4mm,MLSS达6000mg/L,SVI维持在40~50mL/g.将Ni2+作用于培养出的成熟AGS,Ni2+在0~2mg/L的浓度范围内会提高AGS的稳定性,使MLSS上升,SVI降低;同时会促进AGS分泌胞外多聚物(EPS),EPS组成成分中的蛋白质(PN)明显多于多糖(PS);Ni2+对好氧颗粒污泥去除总氮(TN)的抑制程度要大于COD,最终COD去除率可维持在95%以上,TN去除率可维持在70%以上.  相似文献   
8.
目的制备硫离子响应杀菌材料,研究它在不同浓度铜离子条件下的封装效果,以及在不同浓度硫离子条件下的释放行为。方法选择埃洛石纳米管为载体并用透射电镜进行表征、采用真空负载的方式,将甲硝唑和苯骈三氮唑(BTA)分步填充到埃洛石纳米管内部,使用紫外分光光度法测试不同浓度铜离子对纳米管中甲硝唑的封堵效果,以及材料在不同浓度硫离子条件下的释放情况。结果实验中通过调整铜离子浓度发现,铜离子浓度越大对甲硝唑的封堵效果越好,当铜离子浓度达到160 mmol/L时,对甲硝唑的封堵效果最好。杀菌材料在外界硫离子达到0.1mmol/L后,甲硝唑的释放浓度迅速提高,进一步提高硫离子浓度,释放情况改变不明显。结论铜离子浓度达到160 mmol/L时,材料的封装效果是最好的。材料能够对硫离子实现响应释放,且对应的临界浓度为0.1 mmol/L。  相似文献   
9.
《干旱环境监测》2004,18(1):59-60
对离子选择电极法测定水中  相似文献   
10.
氟离子电极法测定植物叶片中氟化物含量   总被引:3,自引:0,他引:3  
对柿树植物叶片中氟化物含量用浸提、氟离子选择电极法做了测定,取得了很好的准确度和精密度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号