首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
环保管理   2篇
综合类   1篇
污染及防治   3篇
  2023年   1篇
  2013年   1篇
  2011年   2篇
  2004年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 296 毫秒
1
1.
In an attempt to identify the ionic imbalance, hydrogen carbonate, HCO3 (bicarbonate), was determined together with the commonly determined nine major ions because the imbalance was frequently encountered in the chemical analysis of samples with high pHs. Titration method was applied for the determination of the samples with pH higher than 5.6. These samples amounted to 102 of the 1536 samples collected in Hokkaido, Northern Japan, from April 1998 to December 2002. Of the 102 samples, 74 (Group A) showed an acceptable ion balance without including HCO3. In the other 28 (Group B), however, inclusion of HCO3 successfully improved the ion balance. These results suggested that hydrogen carbonate was a potential candidate for explaining the imbalance. The hydrogen carbonate concentrations showed a strong correlation with the corresponding non-sea salt calcium (nss-Ca2+) concentrations, which implied that hydrogen carbonate was derived from calcium carbonate particles incorporated into falling raindrops or cloud droplets. For Group A, the relationship between hydrogen carbonate and the nss-calcium ion concentration was very similar to that for commonly suspended particles in Hokkaido. On the other hand, Group B exhibited a stronger but significantly different correlation. To the samples of Group B, a back-trajectory analysis was applied to demonstrate that the samples were associated with aerosol travelling from Northern China or Mongolia, which indicated that alkaline aerosol affected the chemistry. In consideration of these findings, the current standard of the ion balance should be critically reviewed for modification in regard to the contribution of hydrogen carbonate not only in source areas but also in receptor areas of alkaline aerosol.  相似文献   
2.
周国强  王强 《四川环境》1999,18(3):37-39,48
矿化度是地下水化学成份测定的重要指标,在环境监测中,用重量法测定矿化度是目前普遍采用的方法。其缺点主要为费时,繁琐,耗电。本文通过测定洛阳市地下水的电导率,分析对比电导率与矿化度的关联,并进一步用回归方程确定电导率与矿化度之间的数量关系,探索出用电导率法间接测定地下水矿化度,具有快速,经济,准确的优点。  相似文献   
3.
Nutrient and dissolved inorganic carbon are two important factors that influence the development and species composition of submerged macrophyte communities in shallow lake ecosystems. Yet little is known about their potential interactive effects on the submerged macrophytes and competition outcome of macrophyte–phytoplankton. We performed a mesocosm experiment to investigate the growth and photosynthetic performance of three submerged macrophytes in relation to phytoplankton/epiphyton with nutrient and bicarbonate enrichment. During the experimental period (42 d), increase in nutrient loading in water column resulted in a substantial burst of phytoplankton and epiphyton growth and increased light attenuation. When combined with nutrient loading, bicarbonate enrichment also resulted in a heavily phytoplankton- and epiphyton-dominated state, although bicarbonate enrichment per se does not cause the phytoplankton and epiphyton growth. However, increase in nutrient loading in water column had significant negative impact on individual performances (growth and photosynthesis) of the three submerged macrophytes and bicarbonate enrichment increased the effect of eutrophication on two dissected-leaf macrophytes (M. spicatum and E. nuttallii). Furthermore, our results also suggest that species-specific photosynthetic performances occurred when submerged macrophytes in an environment with high abundance of phytoplankton/epiphyton. This study highlighted that increase in nutrient loading and bicarbonate in water column is likely to interactively impact both abiotic and biotic properties of a freshwater ecosystem. The interactions of these two factors could select macrophyte species that are able to resist the shading from phytoplankton/epiphyton, making these species more dominant in natural freshwater ecosystems.  相似文献   
4.
Sulfite (SO32−) activation is one of the most potential sulfate-radical-based advanced oxidation processes, and the catalysts with high efficiency and low-cost are greatly desired. In this study, the cobalt nanoparticles embedded in nitrogen-doped graphite layers (Co@NC), were used to activate SO32− for removal of Methyl Orange in aqueous solution. The Co@NC catalysts were synthesized via pyrolysis of Co2+-based metal-organic framework (Co-MOF), where CoO was firstly formed at 400℃ and then partially reduced to Co nanoparticles embedded in carbon layers at 800℃. The Co@NC catalysts were more active than other cobalt-based catalysts such as Co2+, Co3O4 and CoFe2O4, due to the synergistic effect of metallic Co and CoxOy. A series of chain reaction between Co species and dissolved oxygen was established, with the production and transformation of SO3, SO52−, and subsequent active radicals SO4•− and HO•. In addition, HCO3 was found to play a key role in the reaction by complexing with Co species on the surface of the catalysts. The results provide a new promising strategy by using the Co@NC catalyst for SO32− oxidation to promote organic pollutants degradation.  相似文献   
5.
6.
In order to establish energy-saving technology for CO2 capture from blast furnace gas, novel absorbents were developed in the laboratory and evaluated at a 1 tCO2/d test plant. At first, CO2 absorption and desorption behaviors of single-component amine solvents for simulated blast furnace gas (CO2/N2 = 20%/80%) were investigated through a screening test using a small scrubbing bottle. These amine solvents were additionally analyzed using nuclear magnetic resonance (13C NMR) spectroscopy and reaction calorimetry. The results of the laboratory experiments showed that there was a trade-off between absorption rate and enthalpy of absorption but some absorbents had unique features. For example, 2-isopropylaminoethanol (IPAE) had high absorption rate and small enthalpy of absorption. Then, new IPAE-based amine solvents (RITE solvents: RITE-A and RITE-B) were formulated and evaluated at the 1 tCO2/d test plant. CO2 regeneration energies of the RITE solvents were 3.3 and 3.1 GJ/tCO2, respectively. With certain process conditions and plant specifications optimized, RITE-B was estimated to have the potential to achieve 2.5 GJ/tCO2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号