首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   0篇
  国内免费   2篇
环保管理   2篇
综合类   14篇
基础理论   104篇
  2017年   1篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2009年   12篇
  2008年   13篇
  2007年   18篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
排序方式: 共有120条查询结果,搜索用时 31 毫秒
1.
Social insect foragers have to make foraging decisions based on information that may come from two different sources: information learned and memorised through their own experience (“internal” information) and information communicated by nest mates or directly obtained from their environment (“external” information). The role of these sources of information in decision-making by foragers was studied observationally and experimentally in stingless bees of the genus Melipona. Once a Melipona forager had started its food-collecting career, its decisions to initiate, continue or stop its daily collecting activity were mainly based upon previous experience (activity on previous days, the time at which foraging was initiated the day(s) before, and, during the day, the success of the last foraging flights) and mediated through direct interaction with the food source (load size harvested and time to collect a load). External information provided by returning foragers advanced the start of foraging of experienced bees. Most inexperienced bees initiated their foraging day after successful foragers had returned to the hive. The start of foraging by other inexperienced bees was stimulated by high waste-removal activity of nest mates. By experimentally controlling the entries of foragers (hence external information input) it was shown that very low levels of external information input had large effect on the departure of experienced foragers. After the return of a single successful forager, or five foragers together, the rate of forager exits increased dramatically for 15 min. Only the first and second entry events had large effect; later entries influenced forager exit patterns only slightly. The results show that Melipona foragers make decisions based upon their own experience and that communication stimulates these foragers if it concerns the previously visited source. We discuss the organisation of individual foraging in Melipona and Apis mellifera and are led to the conclusion that these species behave very similarly and that an information-integration model (derived from Fig. 1) could be a starting point for future research on social insect foraging. Received: 16 April 1997 / Accepted after revision: 30 August 1997  相似文献   
2.
The monopolization of resources plays an important theoretical role in the literature on competition for food and mates. We used 12 groups of male water striders (Aquariusremigis) to: (1) test the general prediction that monopolization of both food and mates decreases as the temporal clumping of resources increases, (2) compare the efficiency of two indices of resource monopolization, coefficient of variation and Q (Ruzzante et al. 1996), and (3) quantitatively assess the resource queue model of Blanckenhorn and Caraco (1992). Each group of six males competed for both food items and mates released from the upstream end of a laboratory stream. The mean inter-arrival time for resource units (food or females) was 10 min, with four levels of temporal clumping (variance in inter-arrival time: 0, 25, 50 or 320 min2). As predicted, the monopolization of both food and mates decreased as the temporal clumping of resource arrival increased, although monopolization was greater for food than for mates. Q detected the difference in monopolization of food and mates, whereas the coefficient of variation did not, because Q is independent of mean resource abundance. The resource queue model successfully predicted monopolization of both resource types, explaining 89% and 76% of variation in the proportion of food and mates acquired by the six males. The success of the model suggests that the scaling of handling time to the variance in resource inter-arrival time should play an important role in any general theory of resource monopolization. Received: 28 February 1997 / Accepted after revision: 26 September 1997  相似文献   
3.
Many birds and mammals store energy as hoarded food supplies. A supply of stored food is beneficial during periods when food is scarce, but building up and managing such a supply also entails costs. The optimal number of caches will be reached when the net benefit is at its maximum. If dominants can steal more stored food from subordinates than the other way around, the optimum will differ between these categories. A previous theoretical model of hoarding in groups with dominant and subordinate members produced three testable predictions: (1) hoarders should store more food as anticipated future conditions get worse; (2) subordinate flock members should store more food than dominants; and (3) dominants should increase hoarding relatively more than subordinates as conditions get worse. Here we present a field experiment on willow tits (Parus montanus) designed to test these predictions. We found support for all three. Hoarding increased as conditions got worse, subordinates stored at a higher rate than dominants, and dominants increased their hoarding effort relatively more than subordinates as conditions worsened. These results support the incorporation of information on dominance and food availability into models predicting food storage behaviour.Communciated by J. Dickinson  相似文献   
4.
Individuals which deviate from the majority in groups are likely to be most vulnerable to predation. This oddity effect, by definition, is frequency dependent, eventually fading at equal frequencies of the phenotypes in a group. It has been hypothesized that the increased predation risk of odd individuals may play an important role in the formation of phenotypically uniform shoals of fish. However, recent work has indicated that individuals may experience, or value, their predation hazard differently depending on their own size in relation to that of other group members: single large fish, but not small ones, appear concerned about their oddity in a shoal. Here I show that the apparent wariness of large fish is also expressed in a frequency-dependent manner, closely conforming to what is predicted if the oddity effect is responsible for their behavior. Using foraging activity of individuals as a means to evaluate their predation risk, I demonstrate with shoals comprising 12 threespine sticklebacks (Gasterosteus aculeatus) that large fish forage least actively when in a shoal consisting of 2 large and 10 small fish. An increase in the number of large fish to 4 among 8 small individuals clearly results in an increase in their foraging activity. However, having reached an equal frequency with small fish in a shoal, large fish do not seem to change their foraging activity much even when their number in a shoal increases further. In contrast, foraging activity of small sticklebacks remains fairly constant throughout the entire range of tested shoal compositions, providing further evidence that small and large fish respond to their oddity differently. Received: 12 February 1998 / Accepted after revision: 7 May 1998  相似文献   
5.
Dominance interactions affected patterns of non-reproductive division of labor (polyethism) in the eusocial wasp Mischocyttarus mastigophorus. Socially dominant individuals foraged for food (nectar and insect prey) at lower rates than subordinate individuals. In contrast, dominant wasps performed most of the foraging for the wood pulp used in nest construction. Social dominance also affected partitioning of materials collected by foragers when they returned to the nest. Wood pulp loads were never shared with nest mates, while food loads, especially insect prey, were often partitioned with other wasps. Dominant individuals on the nest were more likely to take food from arriving foragers than subordinate individuals. The role of dominance interactions in regulating polyethism has evolved in the eusocial paper wasps (Polistinae). Both specialization by foragers and task partitioning have increased from basal genera (independent-founding wasps, including Mischo-cyttarus spp.) to more derived genera (swarm-founding Epiponini). Dominance interactions do not regulate forager specialization or task partitioning in epiponines. I hypothesize that these changes in polyethism were enabled by the evolution of increased colony size in the Epiponini. Received: 8 December 1997 / Accepted after revision: 28 March 1998  相似文献   
6.
Dancing and trophallactic behaviour of forager honey bees, Apis mellifera ligustica >Spinola, that returned from an automatic feeder with a regulated flow rate of 50% weight-to-weight sucrose solution (range: 0.76–7.65 μl/min) were studied in an observation hive. Behavioural parameters of dancing, such as probability, duration and dance tempo, increased with the nectar flow rate, though with very different response curves among bees. For trophallaxis (i.e. mouth-to-mouth exchange of food), the frequency of giving-contacts and the transfer rate of the nectar increased with the nectar flow rate. After unloading, foragers often approached other nest mates and begged for food before returning to the food source. This behaviour was less frequent at higher nectar flow rates. These results show that the profitability of a food source in terms of nectar flow rate had a quantitative representation in the hive through quantitative changes in trophallactic and dancing behaviour. The role of trophallaxis as a communication channel during recruitment is discussed. Received: 14 January 1995/Accepted after revision: 14 August 1995  相似文献   
7.
To detect threats and reduce predation risk prey animals need to be alert. Early predator detection and rapid anti-predatory action increase the likelihood of survival. We investigated how foraging affects predator detection and time to take-off in blue tits (Parus caeruleus) by subjecting them to a simulated raptor attack. To investigate the impact of body posture we compared birds feeding head-down with birds feeding head-up, but could not find any effect of posture on either time to detection or time to take-off. To investigate the impact of orientation we compared birds having their side towards the attacking predator with birds having their back towards it. Predator detection, but not time to take-off, was delayed when the back was oriented towards the predator. We also investigated the impact of foraging task by comparing birds that were either not foraging, foraging on chopped mealworms, or foraging on whole ones. Foraging on chopped mealworms did not delay detection compared to nonforaging showing that foraging does not always restrict vigilance. However, detection was delayed more than 150% when the birds were foraging on whole, live mealworms, which apparently demanded much attention and handling skill. Time to take-off was affected by foraging task in the same way as detection was. We show that when studying foraging and vigilance one must include the difficulty of the foraging task and prey orientation.Communicated by P.A. Bednekoff  相似文献   
8.
Energy intake and expenditure on natural foraging trips were estimated for the seed-harvester ants, Pogonomyrmex maricopa and P. rugosus. During seed collection, P. maricopa foraged individually, whereas P. rugosus employed a trunk-trail foraging system. Energy gain per trip and per minute were not significantly different between species. There was also no interspecific difference in energy cost per trip, but energy cost per minute was lower for P. maricopa foragers because they spent on average 7 min longer searching for a load on each trip. Including both unsuccessful and successful foraging trips, average energy gain per trip was more than 100 times the energy cost per trip for both species. Based on this result, we suggest that time cost incurred during individual foraging trips is much more important than energy cost in terms of maximizing net resource intake over time. In addition, because energy costs are so small relative to gains, we propose that energy costs associated with foraging may be safely ignored in future tests of foraging theory with seed-harvesting ant species.  相似文献   
9.
Several sexual selection theories assume certain benefits of female mate preference. The direct benefit, i.e., the direct contribution from males to their offspring and females, has been well tested empirically. However, the indirect benefit, i.e., the male's genetic contribution to their offspring, has been poorly demonstrated. Female preference for males' carotenoid-based coloration is known in some animals. Since animals must acquire carotenoids through foods, it is often hypothesized that the brightness of the carotenoid-based coloration is a reliable indicator of the male's foraging ability. Hence, females' indirect benefits, such as greater foraging ability in their offspring, through mate preference for the carotenoid-based coloration are assumed. However, the heritability of the foraging ability for foods that serve as carotenoid resources has not been tested. In this study, a maze experiment was performed in guppies (Poecilia reticulata) to examine the heritability of the foraging ability for algae, carotenoid resources in nature. The latency for completing algal-foraging tasks in this experiment showed high individual variation. Heritable estimates of the foraging ability were substantial (h 2 = 0.57 – 0.66) and significant, suggesting a genetic contribution to the foraging ability from fathers to their offspring. This result may support the hypothesis that indirect benefits influence the evolution of female choice.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号