首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
安全科学   3篇
环保管理   1篇
综合类   2篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
The formation of hydrate will lead to serious flow assurance problems in deepwater submarine natural gas transmission pipelines. However, the accurate evaluation model of the hydrate blocking risk for submarine natural gas transportation is still lacking. In this work, a novel model is established for evaluating the hydrate risk in deepwater submarine gas pipelines. Based on hydrate growth-deposition mechanism, the mathematical model mainly consists of mass, momentum and energy conservation equations. Meantime, the model results are obtained by finite difference method and iterative technique. Finally, the model has been applied in the production of deepwater gas field (L Gas Field) in China, and the sensitivity analysis of relevant parameters has been carried out. The results show that: (a). The mathematical model can well predict the hydrate blockage risk in deepwater natural gas pipelines after verification. (b). Hydrate is easily formed at the intersection of horizontal pipeline and vertical riser, and the maximum blocking position often occurs in middle of the riser. (c). The hydrate blockage degree and length of hydrate formation region (HFR) decrease with the increase of gas transport rate. (d). The hydrate blockage degree and length of HFR decrease with the increase of gas transport temperature. (e). The hydrate blockage degree and length of HFR increase with the extension of horizontal pipeline. (f). Injecting inhibitors can effectively inhibit hydrate formation and blockage, but the improvement of transmission measures can significantly reduce the dosage of inhibitor. It is concluded that measures such as increasing gas transportation rate and temperature, shortening horizontal pipeline length, optimizing inhibitor injection point and injection rate can play a safe, economic and efficient role in hydrate preventing and controlling.  相似文献   
2.
从对水环境分析要素DO、COD、BOD等的测定、对微生物等生命体呼吸活性的观测等需求出发,通过对激发态钌、铂等络合物遇氧后荧光减弱的消光特性研究,开发并制作出新型光化学传感器,从而实现对溶解氧浓度的测定。  相似文献   
3.
二氧化碳水合物是一种潜在的新能源,随着环境问题的日益突出,国内外科学家愈加重视二氧化碳水合物的研究,本文主要对二氧化碳水合物的强化方法进行了总结,对比了几种方法对水合物生成的影响。  相似文献   
4.
A thermodynamic procedure has been proposed which can be used to predict the gas pressure, temperature and flow rate through orifice upon chock flow condition, using equation of state (EOS). The procedure applied for emergency depressurization operation incorporating the Peng-Robinson EOS and validated by comparing flow rates of a multi-component hydrocarbon gas mixture for thirteen experimental cases. The average absolute deviations of the predicted flow rates for orifice discharge coefficients of 0.85 and 0.9, are 7.36% and 2.03%, respectively. The corresponding error for API 520 (American Petroleum Institute Recommendation Practice 520) method is 6.91%. In this work, the hydrate formation temperature and hydrate inhibitor type and its required weight fraction for preventing the hydrate formation upon orifice and its upstream conditions are evaluated by the EZ-Thermo software using the Moshfeghian–Maddox method. The results qualitatively show that the hydrate prevention is essential for the safety of the operation due to low temperature condition.  相似文献   
5.
Methanol is the most widely used natural gas hydrate inhibitor and it is only effective as a hydrate inhibitor in the aqueous phase. Methanol is not regenerated in natural gas inhibition process due to its intermittent application in most cases. However, a significant cost is associated with the process because of methanol loss while utilizing this inhibitor. In this work, several intelligent models along with a new mathematical correlation are presented in terms of methanol concentration in aqueous phase and temperature to precisely forecast the methanol loss in the saturated hydrocarbons phase. An excellent match was noticed between the calculated results and literature data.  相似文献   
6.
油气田水合物形成机理及抑制剂的研究进展   总被引:1,自引:0,他引:1  
通过介绍水合物的结构、形成机理及形成这种物质所带来的弊端,指出了研究合理的水合物抑制剂,在油气田发展环境保护中具有重要的理论和现实意义。同时根据水合物生成条件及主要防治措施,针对现有水合物抑制剂的种类及应用特点,提出了油气田水合物抑制剂研究的发展方向。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号