首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   2篇
综合类   3篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2008年   1篇
  2006年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 203 毫秒
1
1.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   
2.
In present study, a simultaneous electrospinning and electrospraying(SEE) process was employed to produce microclusters of TiO_2 nanoparticles and interlock them in nanofibrous network. The photocatalytic composite membranes(PCMs) were fabricated by electrospraying TiO_2 nanoparticle suspension into microcluster form that dispersed and entrapped within nylon-6 electrospun fiber membrane. Three PCMs membrane with TiO_2 content of 52.0, 83.6,and 91.7 wt.% were successfully fabricated. The membrane consisted of TiO_2 microclusters,ranging in sizes from around 0.3 to 10 μm, distributed uniformly within the nylon-6 nanofibrous network. PCMs photocatalytic activity against Methylene Blue(MB) in aqueous solution showed more than 98% MB removal efficiency after 120 min of photocatalytic oxidation(PCO) for all PCMs. For PCM with the highest TiO_2 content tested for 5 PCO cycles, it was found that most of their TiO_2 content remained incorporated within the nanofibrous structure. The concept of nanoparticles clusters entrapment with SEE fabrication employed here provide a simple and effective method for reducing detachment of nanostructure phase from nanocomposite membrane.  相似文献   
3.
文章综述了具有纳米结构的粘土矿物(高岭土、蒙脱土和海泡石)、硫化物材料和纳米复合材料的制备及其从水中吸附去除重金属离子机理的研究进展.此外,还比较了多种可应用于重金属源头阻控的技术方案,讨论了适用于农业灌溉重金属阻控的装置组成和净化材料类型等.最后对有待进一步解决的问题和阻控技术发展方向进行了展望.  相似文献   
4.
聚丙烯酰胺/氧化石墨纳米复合材料的制备及其表征   总被引:4,自引:0,他引:4  
采用层离吸收和原位聚合的方法制备了丙烯酰胺/氧化石墨、聚丙烯酰胺/氧化石墨纳米复合材料的制备,X-射线衍射分析表明,丙烯酰胺和聚丙烯酰胺在氧化石墨中有着不同的排列方式。  相似文献   
5.
BiFeO3 (BFO), as a kind of narrow band-gap semiconductor material, has gradually emerged advantages in the application of photocatalysis. In this paper, Ca doped BFO nanoparticles Bi0.9Ca0.1FeO3 (BCFO) were prepared by sol-gel method. And BCFO and CdS nanocomposites with two morphologies were obtained by controlling the time of loading CdS under a low temperature liquid phase process. It is found that the band gap becomes narrower after doping Ca into BFO, which is conducive to the absorption of visible light. Among all the samples, the composite of CdS nanowires and BCFO nanoparticles obtained by reaction time of 10 min has the best photocatalytic performance. The degradation rate of Methyl Orange solution was 94% after 90 min under visible light irradiation, which was much higher than that of pure BCFO and CdS. Furthermore, significant enhancement in the degradation rate (100% degradation in 60 min) can be achieved in poled samples after electric polarization process. The highest degradation rate is due to the promoted separation of photogenerated carriers induced by the internal polarization field and the formation of S-scheme heterostructure between BCFO and CdS. Such BCFO-CdS nanocomposites may bring new insights into designing highly efficient photocatalyst.  相似文献   
6.
The best approach to induce oxo-biodegradation in polyethylene is the use of special additives known as pro-oxidants. Pro-oxidants accelerate abiotic oxidation and subsequent polymer chain cleavage rendering the product apparently more susceptible to biodegradation. In this work, the abiotic oxidation is studied to understand how the addition of nanoclay affects the oxidation rate and the degradation mechanism of oxo-biodegradable polyethylene. In order to achieve this, the following materials were used in this study: (1) polyethylene (PE), (2) oxo-biodegradable polyethylene (OPE), (3) polyethylene nanocomposite (PENac), and (4) oxo-biodegradable polyethylene nanocomposite (OPENac). Wide-Angle X-ray scattering (WAXS) and Transmission Electron Microscopy (TEM) studies reveal that grafting in the preparation of composites helps to achieve mixed intercalated/exfoliated morphology in PENac and OPENac. Abiotic oxidation was carried out in an oven for a period of 14 days at 70 °C with air supply. The effect of abiotic oxidation was evaluated by measuring the changes in tensile strength, elongation at break, carbonyl index and molecular weight. Results show that OPE and OPENac are more susceptible to oxidation than PENac. The molecular weight distribution data obtained from GPC reveal that the addition of nanoclay does not alter the oxidation mechanism in OPE significantly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号