排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
We demonstrate a materials budget approach to identify the main source areas and fluxes of pathogens through a landscape by using the flux of fine sediments as a proxy for pathogens. Sediment budgets were created for three subcatchment tributaries of the Googong Reservoir in southeastern New South Wales, Australia. Major inputs, sources, stores, and transport zones were estimated using sediment sampling, dam trap efficiency measures, and radionuclide tracing. Particle size analyses were used to quantify the fine-sediment component of the total sediment flux, from which the pathogen flux was inferred by considering the differences between the mobility and transportation of fine sediments and pathogens. Gullies were identified as important sources of fine sediment, and therefore of pathogens, with the pathogen risk compounded when cattle shelter in them during wet periods. The results also indicate that the degree of landscape modification influences both sediment and pathogen mobilization. Farm dams, swampy meadows and glades along drainage paths lower the flux of fine sediment, and therefore pathogens, in this landscape during low-flow periods. However, high-rainfall and high-flow events are likely to transport most of the fine sediment, and therefore pathogen, flux from the Googong landscape to the reservoir. Materials budgets are a repeatable and comparatively low-cost method for investigating the pathogen flux through a landscape. 相似文献
2.
3.
《环境科学学报(英文版)》2024,36(1):59-71
Fouling of landfill leachate, a biofilm formation process on the surface of the collection system, migration pipeline and treatment system causes low efficiency of leachate transportation and treatment and increases cost for maintenance of those facilities. In addition, landfill leachate fouling might accumulate pathogens and antibiotic resistance genes (ARGs), posing threats to the environment. Characterization of the landfill leachate fouling and its associated environmental behavior is essential for the management of fouling. In this study, physicochemical and biological properties of landfill leachate fouling and the possible accumulation capacity of pathogens and ARGs were investigated in nitrification (aerobic condition) and denitrification (anaerobic condition) process during landfill leachate biological treatment, respectively. Results show that microbial (bacterial, archaeal, eukaryotic, and viral) community structure and function (carbon fixation, methanogenesis, nitrification and denitrification) differed in fouling under aerobic and anaerobic conditions, driven by the supplemental leachate water quality. Aerobic fouling had a higher abundance of nitrification and denitrification functional genes, while anaerobic fouling harbored a higher abundance of carbon fixation and methanogenesis genes. Both forms of leachate fouling had a higher abundance of pathogens and ARGs than the associated leachate, suggesting the accumulation capacity of fouling on biotic pollutants. Specifically, aerobic fouling harbored three orders of magnitude higher multidrug resistance genes mexD than its associated leachate. This finding provides fundamental knowledge on the biological properties of leachate fouling and suggests that leachate fouling might harbor significant pathogens and ARGs. 相似文献
4.
Recently, tetrakis(hydroxymethyl)phosphonium sulfate(THPS) was found to play an important role in the sludge pretreatment process. However, the effects of THPS pretreatment on the characteristics of sewage sludge are still insufficiently understood.The properties of sludge after pretreatment with different concentrations of THPS were investigated in this study. The results showed that pH, dewatering ability, and particle size of sludge decreased with increase in THPS concentration. The volatile suspended solids(VSS) and total suspended solids(TSS) of sludge also decreased slightly with increase in THPS concentration. The specific oxygen uptake rate(SOUR) results suggested that lower THPS concentrations(≤ 1.87 mg/g VSS) enhanced the activity of sludge, but higher concentrations(≥ 1.87 mg/g VSS) inhibited it. Gram-negative bacteria with peritrichous flagellation(such as Pseudomonas, Escherichia, and Faecalibacterium) were extremely sensitive to THPS. The decrease in specific most probable numbers(MPNs) of pathogens(total coliforms and Escherichia coli) with the increase in THPS concentration also proved the sterilization ability of THPS in the sludge pretreatment process. Pretreatment of sludge with concentrations of THPS higher than 37.41 mg/g VSS would meet the pathogen requirements for land application of Class A biosolids. 相似文献
5.
Ika Paul-Pont Xavier de Montaudouin Florence Jude Christine Paillard 《Environmental pollution (Barking, Essex : 1987)》2010,158(11):3401-3410
In natural environment, marine organisms are concomitantly exposed to pollutants and multiple disease agents resulting in detrimental interactions. The present study evaluated interactive effects of metal contamination (cadmium) and pathogenic organisms (trematode parasites Himasthla elongata and pathogenic bacteria Vibrio tapetis) singularly and in combination on the bivalve Ruditapes philippinarum, an introduced species to Europe, under laboratory controlled conditions. After 7 days, metal bioaccumulation and pathogen load were analyzed as well as metallothionein (MT) response and hemocyte concentrations and activities. Results showed that infection by opportunistic pathogens affects metal accumulation, leading to maximal Cd accumulation in co-infected clams. Among stressors only V. tapetis induced significant effects on immune parameters whereas a particular interaction “trematode-bacteria” was shown on MT responses. Despite low trematode infection in agreement with the resistant status of R. philippinarum to these macroparasites, significant interaction with bacteria and metal occurred. Such results highlight the necessity of taking pathogens into account in ecotoxicological studies. 相似文献
6.
Sebastian Borowski Jarosław Domański Laurence Weatherley 《Waste management (New York, N.Y.)》2014,34(2):513-521
The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm3/kgVS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM = 70:20:10 by weight) was only 336 dm3/kgVS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant. 相似文献
7.
C. Da Ros C. Cavinato P. Pavan D. Bolzonella 《Waste management (New York, N.Y.)》2014,34(11):2028-2035
In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m3/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters.The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37 °C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. 相似文献
8.
The aim is to fill a water storage with potable water of a given quality, for subsequent treatment and distribution to a water
conveying system. During a given period, a set of several pumping stations is working to deliver water from different sources
at different locations. A multi-stage control process is considered whereby the total pumping time is divided into short sampling
intervals. The intensity of pumping as a function of time is the control variable. It is assumed that there exists a reliable
forecast of every pollutant as a function of time and water source. The amount of the pollutants are constrained in the final
mass of water in the storage. The mass of water at the end of the operation period should be maximized. A linear programming
(LP) model of the problem is described, and an algorithm of the reduction of its dimensionality is presented. An illustrative
example is shown.
A short conference version of this paper has been presented at 14th IEEE Mediterranean Conference on Control Automation, June
28–30 2006, Polytechnical University of Ancona, Ancona, Italy. 相似文献
9.
Sulfur dioxide(SO_2) and benzene homologs are frequently present in the off-gas during the process of sewage sludge drying. A laboratory scale biofilter was set up to co-treat SO_2 and o-xylene in the present study. SO_2 and o-xylene could be removed simultaneously in a single biofilter. Their concentration ratio in the inlet stream influenced the removal efficiencies. It is worth noting that the removal of SO_2 could be enhanced when low concentrations of o-xylene were introduced into the biofilter. Pseudomonas sp., Paenibacillus sp., and Bacillus sp. were the main functional bacteria groups in the biofilter. Sulfur-oxidizing bacteria(SOB) and o-xylene-degrading bacteria(XB) thrived in the biofilter and their counts as well as their growth rate increased with the increase in amount of SO_2 and o-xylene supplied. The microbial populations differed in counts and species due to the properties and components of the compounds being treated in the biofilter. The presence of mixed substrates enhanced the diversity of the microbial population. During the treatment process, bioaerosols including potentially pathogenic bacteria, e.g., Acinetobacter lwoffii and Aeromonas sp., were emitted from the biofilter. Further investigation is needed to focus on the potential hazards caused by the bioaerosols emitted from waste gas treatment bioreactors. 相似文献
10.
The potential health risks of airborne bacteria emission from a wastewater treatment process have been concerned. However, few studies have investigated the differences in community structure between indoor and outdoor bacteria. In this work, the characterization of airborne bacteria was studied in a municipal wastewater treatment plant in Beijing, China. Two indoor (i.e., fine screen room and sludge dewatering house) and two outdoor (i.e., aeration tank and control site) sampling sites were selected. An Andersen six-stage impactor was used for collecting culturable airborne bacteria in the air, and Illumina MiSeq sequencing was conducted to track the emission source of the culturable airborne bacteria. The results indicate that, compared with the outdoor aeration tank site, the concentrations of culturable airborne bacteria in the indoor fine screen room with poor ventilation were more than ten times higher and the particle size was about twice as large. The community structures of indoor and outdoor culturable airborne bacteria were obviously different. Enterobacteriaceae and opportunistic pathogens were detected in indoor culturable airborne bacteria, with wastewater and sludge dewatering machine identified as the primary sources. Conversely, Enterobacteriaceae and opportunistic pathogens were not detected in outdoor culturable airborne bacteria. Outdoor high wind speed might have resulted in rapid dilution and mixing of culturable airborne bacteria generated from the aeration tank with the ambient air. The results of the present research suggest that covering pollution sources, increasing ventilation rates, and using protective measures for personnel should be implemented to decrease the exposure risk to indoor culturable airborne bacteria. 相似文献