首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
综合类   2篇
  2019年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
The effects of polyaluminum chloride (PACl) hydrolysis prior to coagulation on both the coagulation zone and coagulation performance of a kaolin suspension were investigated by a novel jar test named the “reversed coagulation test”. The tests showed that PACl hydrolysis prior to coagulation decreased the performance of charge neutralization coagulation in the case of short-time slow mixing (10 min; G = 15 sec ?1 ) and increased the optimal dosage for charge neutralization and sweep coagulation. Moreover, the hydrolysis time had insignificant effects on the size and zeta potential of PACl precipitates and the residual turbidity of the raw water. However, PACl hydrolysis prior to coagulation and the size of PACl precipitates had a negligible effect on the performance of sweep coagulation.The results imply that, in practice, preparing a PACl solution with deionized water, rather than tap water or the outlet water from a wastewater treatment unit, can significantly save PACl consumption and improve the performance of charge neutralization coagulation,while preparing the PACl solution with tap or outlet water would not affect the performance of sweep coagulation. In addition, the optimal rapid mixing intensity appears to be deter-mined by a balance between the degree of coagulant hydrolysis before contacting the primary particles and the average size of flocs in the rapid mixing period. These results provide new insights into the role of PACl hydrolysis and will be useful for improving coagulation efficiency.  相似文献   
2.
It is well known that calcium arsenates may not be a good choice for arsenic removal and immobilization in hydrometallurgical practices. However, they are still produced at some plants in the world due to various reasons. Furthermore, calcium arsenates can also naturally precipitate under some specific environments. However, the transformation process of poorly crystalline calcium arsenates (PCCA) and the stability of these samples under atmospheric CO2 are not yet well understood. This work investigated the transformation process of PCCA produced by using different neutralization reagents (CaO vs. NaOH) with various Ca/As molar ratios at pH?7–12 in the presence of atmospheric CO2. After aging at room temperature for a period of time, for samples neutralized with NaOH and precipitated at pH?10 and 12, release of arsenic back into the liquid phase occurred. In contrast, for the samples precipitated at pH?8, the aqueous concentration of arsenic was observed to decrease. XRD, Raman, and SEM results suggested that the formation of various types of crystalline calcium carbonates and/or calcium arsenates controls the arsenic behavior. Moreover, the application of lime may enhance the stability of the generated PCCA. However, no matter what neutralization reagent is used, the stability of the generated PCCA is still of concern.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号