首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   68篇
  国内免费   244篇
安全科学   94篇
废物处理   83篇
环保管理   58篇
综合类   579篇
基础理论   106篇
污染及防治   173篇
评价与监测   30篇
社会与环境   6篇
灾害及防治   10篇
  2024年   6篇
  2023年   20篇
  2022年   25篇
  2021年   32篇
  2020年   23篇
  2019年   25篇
  2018年   14篇
  2017年   33篇
  2016年   37篇
  2015年   44篇
  2014年   71篇
  2013年   54篇
  2012年   75篇
  2011年   56篇
  2010年   51篇
  2009年   55篇
  2008年   72篇
  2007年   36篇
  2006年   63篇
  2005年   40篇
  2004年   45篇
  2003年   34篇
  2002年   27篇
  2001年   23篇
  2000年   29篇
  1999年   23篇
  1998年   9篇
  1997年   20篇
  1996年   18篇
  1995年   25篇
  1994年   18篇
  1993年   11篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有1139条查询结果,搜索用时 15 毫秒
11.
谢德华  施周  陈世洋  谢鹏  宋勇 《环境科学》2010,31(9):2100-2104
基于唐南渗析原理,采用阳离子交换膜去除原水中Cu2+、Mn2+、Zn2+等重金属离子,研究影响阳离子交换膜去除各重金属离子能力大小的机制以及2种重金属离子共存时互相干扰的机制.结果表明,阳离子交换膜可有效去除原水中Cu2+、Mn2+、Zn2+等重金属离子,去除率为75%~85%;在浓度相同下且重金属离子带相同电荷数时,其水化离子半径越小,离子扩散速度就越快,阳离子交换膜对其去除能力就越强;当重金属水化离子半径基本相同时,膜对原子序数小的重金属离子的去除能力更强;相同浓度且相同电荷数的重金属离子共存时,各离子同步被去除,但各离子之间存在干扰,越易于被离子交换的离子与其它离子共存时,其竞争能力越强,使其他离子的去除率降低越多;当待去除离子的总浓度远低于膜的交换容量时,离子共存时各离子的去除率相比离子单独存在时各离子的去除率下降幅度不大.  相似文献   
12.
采用聚氨酯泡沫-被动采样法(PUF-PAS)采集鸭儿湖地区大气样,研究典型污染源地区大气中有机氯农药(OCPs)组成、来源及土-气交换现状。鸭儿湖地区大气中OCPs主要组成为艾氏剂(Aldrin)、滴滴涕(DDTs)、六六六(HCHs)、六氯苯(HCB)、甲氧滴滴涕(Methoxychlor)和a-硫丹(α-Endosulfan),约占OCPs总量的84%。较高浓度Aldrin(平均浓度为161.25 pg/m3)广泛存在应引起高度重视。HCHs(平均浓度为89.64 pg/m3)和DDTs(平均浓度为92.29 pg/m3)普遍存在且含量高,污染程度比较明显。HCHs异构体中β-HCH高于α-HCH,远远高于γ-HCH和δ-HCH,说明HCHs经过长期降解已逐渐稳定下来;来源分析推测存在工业HCHs的使用或者受大气长距离传输影响。DDTs在各点位分布明显不同于HCHs,且各点位DDTs的六种组成均存在很大差别,可能由于点位地理位置以及农药使用情况导致;来源分析推测大气中DDTs主要来自历史残留。鸭儿湖地区OCPs土气交换研究表明,HCHs主要表现为从大气向土壤中沉降;DDTs在大多数点位源于土壤中历史残留的挥发,部分点位受到大气长距离传输影响。  相似文献   
13.
以涡度相关技术为主要观测手段,连续观测冬小麦和水稻生态系统主要生长季净生态系统CO2交换(NEE)的变化规律,评估两种农田生态系统CO2的源/汇功能.结果表明,整个观测期间,两种作物生态系统CO2浓度的日变化曲线呈现白天低、晚上高的"一峰一谷"型,冬小麦生态系统变化较为平缓,而水稻生态系统变化则比较剧烈.冬小麦和水稻生态系统白天30 min CO2通量的平均值分别为-13.4 μmol·m-2·s-1和-12.9 μmol·m-2·s-1,通量最高值分别出现冬小麦的孕穗期与水稻的开花期.此外,两种作物生长季CO2通量表现出"U"形曲线的日变化特点,白天以吸收CO2为主,冬小麦和水稻生态系统分别于12:00和11:30达到吸收峰值;夜间CO2通量变化较为稳定,表现为呼吸排放CO2.两种农田生态系统均表现为碳汇,冬小麦与水稻生态系统净碳交换分别为188.2 g·m-2与233.8 g·m-2.  相似文献   
14.
NDA-100大孔树脂对水溶液中水杨酸的吸附行为研究   总被引:33,自引:0,他引:33       下载免费PDF全文
通过静态吸附试验,研究了NDA-100大孔树脂对水溶液中水杨酸的吸附动力学及热力学特性,结果表明吸附符合一级动力吸附方程,颗粒内扩散过程是影响吸附速率的主要控制步骤,吸附符合Langmuir和Freundlich等温吸附方程,吸附为放热的物理吸附过程。  相似文献   
15.
《环境》2009,(5):54-55
据相关媒体报道,英国将推出一款由蔬菜制造的赛车,这款崭新的赛车采用由巧克力提炼而成的燃料,时速可达145英里。这款车由英国西米德兰兹郡沃里克大学的WorldFirst团队设计,名为“ecoF3”。驾驶盘由萝卜制成,车身和座位分别由土豆和大豆制造,各组件均以蔬菜纤维混合树脂而成,采用以植物油制造的润滑剂。  相似文献   
16.
02移山填海般的力量,很少有人注意到,地球母亲已经不能一如既往地轻松抹去周身的污浊.马斯河谷、多诺拉城、波查里加、伦敦……一幕幕惨剧惊醒了世界,人类开始反思自己的行为,各国政府和民众纷纷行动起来,为保护人类共有的大气层戮力同心.  相似文献   
17.
采用HZ-16型大孔树脂对含三(三溴苯氧基)三嗪(RDT-8)废水进行吸附及脱附处理。实验结果表明:在废水流量为4.0 BV/h的条件下,树脂最佳吸附工艺条件为出水体积88.0 BV,此条件下出水COD小于291 mg/L,挥发酚质量浓度小于0.08 mg/L;在脱附液流量为0.5 BV/h的条件下,树脂最佳脱附工艺条件为脱附液体积3.0 BV,此条件下脱附液中挥发酚质量浓度为30.6 mg/L,挥发酚脱附率高达76.4%。在最佳吸附-脱附工艺条件下,连续进行10次动态吸附-脱附实验,吸附出水中COD为137~294 mg/L,COD去除率为72.5%~89.1%,挥发酚质量浓度稳定在0.05 mg/L以下,挥发酚去除率为99.8%~100%,说明HZ-16型大孔树脂的吸附-脱附性能稳定。  相似文献   
18.
膨润土对复合污染中表面活性剂的吸附及机理   总被引:7,自引:2,他引:7  
选取阳离子表面活性剂氯化十六烷基吡啶(CPC)、阴离子表面活性剂十二烷基苯磺酸钠(SDBS)及非离子表面活性剂Triton X-100(TX-100)为代表,研究了其在膨润土上的吸附行为,探讨了膨润土阳离子交换容量(CEC)、温度、盐度对CPC吸附的影响.结果表明,Na基膨润土对CPC的吸附性能最好,对SDBS基本无吸附,对TX-100的吸附介于两者之间.Na基膨润土对CPC的吸附是阳离子交换和疏水键缔合共同作用的结果,对TX-100的吸附主要是通过其与膨润土硅氧表面间的氢键作用,同时通过疏水键作用形成吸附双分子层;SDBS在Ca基膨润土上的吸附损失量先增大后减小,在1.5倍临界胶束浓度 (CMC)时达到极大值,主要机理是SDBS与膨润土中的Ca2+产生沉淀作用,而胶束具有再溶解沉淀的作用.膨润土对CPC的吸附量随着温度升高而降低,随着CEC的增大而增大,一定浓度NaCl的加入有利于其在膨润土上的吸附.  相似文献   
19.
制备了聚甲亚胺酰胺树脂,对其进行傅里叶变换红外光谱分析。采用批处理方法实验了pH、铜离子初始浓度、吸附时间、吸附剂用量对吸附量的影响,研究了等温吸附模型和吸附动力学模型。优化后的吸附条件为:在铜离子溶液体积50 mL、初始浓度为300 mg/L、pH为6.0时,吸附剂投放量50 mg、吸附时间60 min,此时吸附量达到269.1 mg/g,去除率达89.7%。25℃时在研究浓度范围内,铜离子吸附过程用Langmuir等温线模型和Freundlich等温线模型描述均可;与准一级动力学方程、Elovich方程及内扩散方程相比,准二级动力学方程能更好地描述其吸附动力学过程。  相似文献   
20.
通过静态吸附实验,研究了二甲胺在ZGSPC106型细颗粒树脂上的吸附行为,从热力学和动力学角度对吸附过程进行了分析,并用红外光谱的方法探讨了树脂吸附二甲胺的机理.结果表明,Langmuir等温方程能够很好的拟合吸附平衡数据,热力学参数表明该吸附可自发进行,且为熵增加的吸热过程,293K温度下树脂的静态饱和吸附容量为138.89mg/g(干树脂);吸附动力学符合准二级动力学模型,颗粒扩散是树脂吸附二甲胺速率的主要控制步骤.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号