首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   59篇
  国内免费   163篇
安全科学   75篇
废物处理   27篇
环保管理   40篇
综合类   335篇
基础理论   38篇
污染及防治   104篇
评价与监测   6篇
社会与环境   13篇
灾害及防治   6篇
  2024年   13篇
  2023年   33篇
  2022年   38篇
  2021年   48篇
  2020年   25篇
  2019年   31篇
  2018年   10篇
  2017年   20篇
  2016年   25篇
  2015年   30篇
  2014年   43篇
  2013年   21篇
  2012年   22篇
  2011年   34篇
  2010年   35篇
  2009年   29篇
  2008年   22篇
  2007年   26篇
  2006年   26篇
  2005年   14篇
  2004年   22篇
  2003年   13篇
  2002年   5篇
  2001年   14篇
  2000年   13篇
  1999年   4篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
排序方式: 共有644条查询结果,搜索用时 15 毫秒
511.
氯苯类生物降解机制可分为三类:氧化脱氯、还原脱氯和共代谢.氯苯类的氯化脱氯机制基本遵循一个相似的降解途径,即首先在双氯化酶攻击下形成二醇,此二醇脱氢形成氯代邻二酚.邻二酚开环产物是相应的氯化粘康酸,脱氯过程发生在此粘康酸内酯化过程中和内酯开环后;还原脱氯需要多种微生物共同参与,脱氯途径很不一样,这与不同微生物种群和不同的环境条件有关;共代谢作用降低了氯苯类化合物的生物毒性,使其更易为别的微生物同化.  相似文献   
512.
废水中苯胺的好氧共代谢降解实验研究   总被引:3,自引:2,他引:3  
微生物共代谢是废水中难降解性有机物生物降解的重要方式.比较了在以苯胺溶液作为惟一碳源与能源和有共代谢底物存在下苯胺的降解过程.结果表明,共代谢显著地提高了苯胺的降解率,在32℃恒温条件下、利用葡萄糖作生长基质、且与苯胺的质量比为1:6、72 h后,苯胺的降解率最高可达75.6%.再加人蛋白胨做氮源后,苯胺的降解率可提高到82.9%,COD的去除率达55.4%.  相似文献   
513.
为掌握江苏地区稻虾及稻蟹共作系统内除草剂残留情况,在2种系统内各选择3家典型养殖基地,采用超高效液相色谱-四极杆飞行时间高分辨质谱联用技术(UPLC-Q-TOF MS),对整个养殖周期内虾、蟹和环境(稻田水体、底泥)样品除草剂残留进行动态非靶向筛查,同时,对检出频率高及检出浓度较高的除草剂进行定量分析,结合风险熵(RQ)和混合风险熵(MRQ)进行生态风险评估。结果表明,稻虾和稻蟹共作系统中分别检出12和11种除草剂,其中,灭草隆和氰草津在2种系统中均有检出。稻虾共作系统中主要残留除草剂为喹草酸[在虾、稻田水和稻田底泥样品中检出频率均较高,最高检出值分别为(12.1±0.17)μg·kg-1、(22.5±2.47)μg·L-1和(21.6±1.91)μg·kg-1]、敌草隆[在3种样品中检出频率均较高,最高检出值分别为(11.5±1.10)μg·kg-1、(16.7±1.65)μg·L-1和19.7±0.97μg·kg-1]、氰草津[在3种样品中检出频率均较...  相似文献   
514.
采用热重实验方法对纸张和不同塑料共热解的协同作用进行了研究。实验结果表明:纸巾和不同种类塑料共热解时,会产生不同程度的交互作用,与线性加权实验结果相比,偏离程度由大到小依次为PVC>PP>PS>HDPE>LDPE>塑胶。其中,纸巾/PVC的偏离高达58.4%;纸巾和LDPE、HDPE,以及塑胶的交互作用则可以忽略不计。纸巾/PVC、纸巾/PP、纸巾/PS共热解的交互作用分别发生在纸巾、PP、PS的热解阶段,这3种组分相应的热解特征参数及动力学参数发生了变化,需要修正。  相似文献   
515.
通过试验研究酸性媒介黄GG染料在厌氧、好氧条件下的生物降解机理、降解能力及共代谢降解效果。试验结果表明,厌氧菌能够通过葡萄糖共代谢作用很快降解酸性媒介黄GG;而好氧条件下经驯化活性污泥不能降解酸性媒介黄GG,经过较长时间驯化活性污泥能降解酸性媒介黄GG,但降解效果很差。葡萄糖浓度的升高对提高酸性媒介黄GG厌氧生物降解率有利,当葡萄糖浓度为2000mg/L时,40mg/L酸性媒介黄GC的12和60h厌氧生物降解率分别达到81.5%和93.5%。酸性媒介黄GG浓度对厌氧菌的生物降解能力也有影响。当葡萄糖浓度为2000mg/L,酸性媒介黄GG(浓度为20~100mg/L)的厌氧降解率最好,降解效率达到了94%,说明厌氧菌对酸性媒介黄GG的降解能力较好。  相似文献   
516.
为了提高室内环境空气质量,本论文开展了光催化剂制备的研究。本论文采用溶胶-凝胶法制备B/Y^3+共掺杂TiO2复合光催化材料,以甲醛为降解物质,在紫外和可见光下分别研究了复合催化剂的光催化活性,对不同掺杂对光催化活性的影响、光催化剂的稳定性进行了分析。B/Y^3+共掺杂TiO2复合光催化材料大大提高了催化剂的活性,对甲醛降解有较高的效率。  相似文献   
517.
基于共词分析的复杂网络研究现状分析   总被引:1,自引:0,他引:1  
以CNKI总库上有关复杂网络的相关文献为数据源,在共词分析的基础上通过多维尺度分析方法和战略坐标分析方法探析复杂网络在我国的研究现状及发展趋势,为从事复杂网络研究的学者提出参考.结果表明:①复杂网络的研究可分为两类,一类是复杂网络的理论研究,另一类是复杂网络的管理和安全方面的研究,这两个研究领域联系不紧密.②复杂网络的理论研究涉及复杂网络拓扑统计性质、演化机制与稳定性等,该领域整体联系比较紧密,研究趋向成熟.复杂网络管理、安全类团内部结构松散,研究尚不成熟,但与复杂网络中其他研究结合紧密,有进一步的发展空间.③在复杂网络的理论研究方面,与复杂系统、加权网络、拓扑结构、同步、稳定性、神经网络相关的研究领域可能成为今后研究的热点领域;在复杂网络管理、安全方面,SNMP将有可能成为热点研究项目.  相似文献   
518.
青顶拟多孔菌对单一和复合多环芳烃的降解特性   总被引:3,自引:0,他引:3       下载免费PDF全文
利用中国东北林区普遍存在白腐菌——青顶拟多孔菌,降解单一和复合多环芳烃,分别测定了菲、蒽、芘于11,22,33d的累积降解率.结果显示,对于单一多环芳烃,该菌种降解能力由强到弱依次为菲>蒽>芘,33d累积降解率依次为96.56%、94.76%和57.53%;对复合多环芳烃降解中,菲和芘的累积降解率分别为99.46%和61.09%.在复合多环芳烃的降解研究中发现,少量蒽的加入,刺激了菌种对菲和芘的降解,使菲和芘的降解率分别提高了2.9%和3.56%.由此提示,在研究降解高环、难降解多环芳烃时,可利用低环多环芳烃对菌种的刺激作用,在体系内形成高、低环多环芳烃的共代谢,以达到更加高效降解多环芳烃的目的.  相似文献   
519.
污泥驯化和共代谢对吡啶和苯降解特性的研究   总被引:1,自引:0,他引:1  
利用瓦氏呼吸仪测定微生物耗氧量的方法,研究了焦化废水及其中难降解有机污染物吡啶、苯的降解特性,并对吡啶和苯分别与苯酚共基质条件下的可生化性进行了研究。结果表明,pH值为7.2时,焦化废水降解率最高;当浓度小于40mg/L时,吡啶和苯可以部分被降解,浓度大于60mg/L时微生物呼吸作用明显地被抑制;污泥驯化有利于有机污染物降解速率的提高。初步分析了共代谢降解焦化废水中难降解有机污染物的生理生化特性。  相似文献   
520.
王钰涛  范晨阳  朱金鑫  李轶  王龙飞 《环境科学》2021,42(12):5826-5835
底栖生物膜是河流生态系统重要的初级生产者,能够对外界环境变化做出迅速响应,在河流碳循环过程中扮演重要角色.然而,人们对于污水处理厂尾水受纳河流底栖生物膜细菌群落与水溶性有机质(water-soluble organic matter,WSOM)的特征及内在联系的认识还十分有限.本研究使用16S rRNA高通量测序、紫外可见光谱和三维荧光-平行因子分析解析代表性污水处理厂尾水受纳区底栖生物膜细菌群落和WSOM的特征.结果表明,底栖生物膜WSOM中识别出两种类腐殖质组分和一种色氨酸类蛋白组分,其中大分子类腐殖质在底栖生物膜WSOM中占据优势地位.尾水区底栖生物膜细菌群落的均匀度及多样性沿程提高,相较于未受污染的上游区,污染源头区和污染下游区生物膜细菌群落结构更加稳定.发色水溶性有机质(colored water-soluble organic matter,CWSOM)、有机质芳香性和分子量是影响尾水区底栖生物膜细菌群落变化的主要因素,其中芳香性色氨酸类蛋白对生物膜细菌群落变化的解释度最高(34%).共现网络揭示了细菌群落与WSOM组分之间复杂的相互关系,Proteobacteria和Halobacterota通过碳循环过程参与生物膜WSOM的新陈代谢,生物膜细菌群落与WSOM的组成将以一种动态变化的模式对尾水排放做出响应.本研究为探寻尾水受纳区水生态变化的指示标志提供了新的思路.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号