首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1658篇
  免费   202篇
  国内免费   747篇
安全科学   136篇
废物处理   30篇
环保管理   155篇
综合类   1407篇
基础理论   473篇
污染及防治   147篇
评价与监测   190篇
社会与环境   37篇
灾害及防治   32篇
  2024年   25篇
  2023年   76篇
  2022年   88篇
  2021年   96篇
  2020年   84篇
  2019年   110篇
  2018年   71篇
  2017年   88篇
  2016年   103篇
  2015年   116篇
  2014年   146篇
  2013年   118篇
  2012年   164篇
  2011年   156篇
  2010年   131篇
  2009年   147篇
  2008年   113篇
  2007年   115篇
  2006年   117篇
  2005年   76篇
  2004年   62篇
  2003年   52篇
  2002年   29篇
  2001年   40篇
  2000年   29篇
  1999年   33篇
  1998年   23篇
  1997年   23篇
  1996年   31篇
  1995年   16篇
  1994年   27篇
  1993年   43篇
  1992年   10篇
  1991年   20篇
  1990年   9篇
  1989年   14篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
排序方式: 共有2607条查询结果,搜索用时 15 毫秒
91.
以2013—2014年期间太原城区大气细颗粒物(PM_(2.5))为研究对象,定量分析了其中多环芳烃和硝基多环芳烃的浓度.结果显示,太原城区PM_(2.5)中16种多环芳烃和12种硝基多环芳烃的浓度分别为13.8~547和0.70~4.33 ng·m~(-3),硝基多环芳烃浓度低于多环芳烃浓度1~2个数量级.太原城区PM_(2.5)中多环芳烃最高值出现在冬季,最低值出现在夏季,冬季污染物浓度平均值高于夏季20倍,主要是由于北方采暖期间取暖用煤量的增加使得多环芳烃排放量大幅提高;与之不同的是,硝基多环芳烃浓度季节变化并不显著,冬季浓度均值与夏季差异小于5倍(除9-硝基蒽),反映出硝基多环芳烃生成主要与机动车尾气排放有关,其排放不受季节控制,这与实际情况是吻合的.此外,基于因子分析和化合物比值结果发现,太原城区大气PM_(2.5)中9-硝基蒽有来自周边地区木材燃烧的贡献.健康风险评价结果表明,必须对多环芳烃排放进行有效控制来降低人群在冬季大气中的暴露风险;对于硝基多环芳烃,其健康风险更要引起足够的重视.  相似文献   
92.
上海南汇潮滩表层中多环芳烃分布特征及环境意义   总被引:3,自引:0,他引:3  
利用GC/MS分析了上海南汇淤泥质潮滩6,8两月表层沉积物中有机污染物多环芳烃,结果表明,该区在6月和8月8潮滩中PAH组化芘,苯并芘及黄蒽具有较高的含量,并且在PAH总量中所占比重也产大,在潮滩沉积物中已呈明显富集的趋势。  相似文献   
93.
松花江流域冰封期水体中多环芳烃的污染特征研究   总被引:3,自引:4,他引:3  
在松花江流域的3个主要江段:嫩江、第二松花江和松花江干流,于2010年冰封期采集了21个水体样品,分析了多环芳烃的污染特征.结果表明,15种PAHs的浓度范围为23.4~85.1 ng·L-1,平均浓度为(50.3±17)ng·L-1,与我国其它地区地表水中PAHs的污染程度相当.松花江流域水体中PAHs具有明显的空间分布特征,城市下游浓度高于上游,说明沿岸城市的污水排放可能是松花江水体中PAHs的主要污染源,主成分分析表明,PAHs的主要来源是化石燃料的燃烧源.商值法生态风险评价结果显示,相对分子质量高的PAHs造成的生态风险可以忽略,相对分子质量低的PAHs对松花江水体会造成一定的危害.  相似文献   
94.
潘苏红  张干  孙亚莉  解启来 《环境科学》2012,33(4):1204-1208
为探讨城市道路街尘中多环芳烃(PAHs)和黑碳(BC)的分布特征,2007年12月~2009年2月,分别在中国的北京、上海、广州和武汉以及印度的加尔各答采集了城市主干道的街尘.样品处理后分别用GC-MS和元素分析仪进行测定.结果表明,中国主要城市道路街尘中PAHs的含量范围为2.30~22.2μg.g-1,主要是以荧蒽、菲、芘、、苯并(b)荧蒽和苯并(ghi)苝为主要的多环芳烃化合物.印度加尔各答PAHs的含量范围为4.85~30.5μg.g-1,呈现出以2环的萘为主要的PAHs化合物.BC在中国主要城市道路街尘中的含量值高于印度的加尔各答,说明了2个国家可能的不同能源结构和能源消耗.相关分析表明,PAHs与BC在不同的城市显示出不同的特点,可能指示了不同的来源.特征比值法表明城市街尘中的PAHs主要来源于机动车排放,其次来源于燃煤.  相似文献   
95.
降解蒽嗜盐菌AD-3的筛选、降解特性及加氧酶基因的研究   总被引:1,自引:0,他引:1  
蒽是典型的多环芳烃类环境污染物,属于美国EPA优先控制的16种多环芳烃类化合物,其在高盐环境下的生物降解备受关注.本研究从某石油污染的高盐土壤中成功筛选出了1株高效降解蒽的菌株,经过对其生理生化特征和16S rDNA序列分析,初步鉴定并命名该菌株为Martelella sp.AD-3.该菌株在0.1%~10%的盐度和6.0~10.0的pH范围内,均能够降解蒽.其生长和降解蒽的优化条件是:蒽初始浓度25 mg·L-1、温度30℃、pH值9.0和盐度3%,在优化条件下培养6 d,蒽的降解率可达到94.6%.根据已报道的双加氧酶α亚基的同源性设计简并引物,通过巢式PCR扩增获得双加氧酶基因的部分序列307 bp(GenBank:JF823991.1),与海杆菌属Marinobacter sp.NCE312(AF295033)菌株萘双加氧酶大亚基的部分氨基酸序列同源性最高为95%.  相似文献   
96.
全氟辛烷磺酸(PFOS)是一种《斯德哥尔摩公约》所列的持久性有机污染物.加强对土壤中PFOS排放的合理认识,并追踪其污染源,对减少和控制土壤中污染物具有重要意义.然而,很少有研究涉及土壤介质中PFOS生命周期排放清单.基于PFOS生命周期评价法构建了 2018年环黄渤海地区各污染源排放到土壤介质中的PFOS排放因子,估...  相似文献   
97.
通过将比值法、主成分分析和正定矩阵分析法相结合对大气中PAHs的污染源进行了解析,结果表明,煤的燃烧和汽车尾气的排放是PAHs的主要污染源,冬季,煤的燃烧是主要污染源,其贡献率为60.6%,其次为汽车尾气排放(34.4%),其他季节,汽车尾气的排放和燃煤污染是主要的污染源,其贡献率分别为59.3%和17.1%。通过等效毒性当量因子计算得到,哈尔滨大气中BaP当量浓度冬季为7.751 9 ng/m3,其他季节为0.688 6 ng/m3,均符合中国规定的10 ng/m3。  相似文献   
98.
以南京市城郊不同土地利用类型的农业土壤(水田、菜地和林地)为研究对象,测定了16种PAHs的含量.结果表明,苊烯(Acy)在所有土壤样本中均未被检出,南京城郊农业土壤15种ω(PAHs)的范围在24.49~925.54μg·kg-1之间,平均值为259.88μg·kg-1.PAHs含量由高到低依次为:林地>水田>菜地,总体上以高环PAHs(HMW)含量为主.不同土壤理化性质对PAHs的影响表明:土壤有机碳(TOC)和黏粒(clay)含量与PAHs存在一定的相关性,pH和全氮(TN)与PAHs无明显相关性.毒性当量法和CSI指数法表明,南京城郊农业土壤中PAHs生态风险较小,但是林地中应当给予一定的重视.增量终身癌症风险(ILCR)进行健康风险评价表明,儿童健康的威胁风险略大于成人,林地的总的致癌风险(CR)明显高于菜地和水田,仍处于可接受的范围内.对成人进行了蒙特卡洛模拟表明,确定性健康风险的风险分析低估了PAHs的健康风险.敏感性分析结果表明,对CR总方差影响最大的输入参数是暴露频率EF(占50.7%).  相似文献   
99.
为研究城郊地区不同土地利用类型土壤多环芳烃(PAHs)的纵向污染特征,对南京市郊菜地、林地、居民点、城镇用地、水田和工业区这6个不同土地利用类型土壤各1剖面(0~100 cm)的15种优控PAHs进行研究,分析了PAHs的纵向分布和组成特征、影响因素和来源.结果表明,6个采样点剖面∑15PAHs含量分别为:菜地69.3~299.2μg·kg-1、林地20.8~128.3μg·kg-1、居民点30.7~142.1μg·kg-1、城镇用地185.6~1 728.7μg·kg-1、水田208.3~693.0μg·kg-1和工业区165.6~739.2μg·kg-1.居民点和林地没有污染,菜地污染水平较轻,水田和工业区污染水平中等,城镇用地污染较严重.除居民点和城镇用地以外的采样点土壤PAHs集中分布在表层或次表层,但在深层仍有检出,且各采样点各深度大多以高环PAHs为主. PAHs的分子特性及成分含量、土壤的理化性质和土地利用方式均会影响P...  相似文献   
100.
屈雅静  魏海英  马瑾 《环境科学研究》2020,33(12):2864-2871
城市公园是城市生态环境的重要组成部分,其环境质量与人类健康息息相关.选择北京市121个城区公园,采集公园土壤样品并分析其中7种多环芳烃(PAHs)含量,评价城区公园土壤中PAHs的含量水平,并基于BP神经网络预测了2020年和2023年土壤PAHs含量.结果表明:北京城区公园土壤中w(PAHs)(7种PAHs总含量)范围为0.033~4.182 mg/kg,低于GB 36600—2018《土壤环境质量建设用地土壤污染风险管控标准(试行)》土壤污染风险筛选值,且7种PAHs的毒性当量浓度(TEQ)均低于世界卫生组织标准值(1 mg/kg),对人体健康的毒性风险较小.将14个影响指标(8个社会经济因子与6个公园特征因子)作为输入层、土壤w(PAHs)作为输出层,建立BP神经网络的拟合优度达0.845.预测结果显示,2020年和2023年北京城区公园土壤中w(PAHs)范围分别为0.008~0.969 mg/kg和0.022~1.988 mg/kg,整体均低于GB 36600—2018土壤污染风险筛选值,但随时间推移呈上升趋势,尤其朝阳区和海淀区将有大幅增长.研究显示:城市化发展因素对土壤w(PAHs)的增加有明显影响,城市发展进程影响不容忽视;至2023年,北京城区公园土壤若不加管理,其w(PAHs)将持续增长.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号