首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   117篇
  国内免费   9篇
安全科学   270篇
废物处理   1篇
环保管理   13篇
综合类   241篇
基础理论   8篇
污染及防治   4篇
评价与监测   2篇
社会与环境   4篇
灾害及防治   170篇
  2024年   13篇
  2023年   34篇
  2022年   44篇
  2021年   41篇
  2020年   21篇
  2019年   29篇
  2018年   22篇
  2017年   21篇
  2016年   26篇
  2015年   27篇
  2014年   31篇
  2013年   31篇
  2012年   28篇
  2011年   41篇
  2010年   17篇
  2009年   23篇
  2008年   27篇
  2007年   27篇
  2006年   25篇
  2005年   24篇
  2004年   20篇
  2003年   20篇
  2002年   12篇
  2001年   17篇
  2000年   9篇
  1999年   12篇
  1998年   12篇
  1997年   11篇
  1996年   3篇
  1995年   11篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
排序方式: 共有713条查询结果,搜索用时 15 毫秒
31.
为研究我国西南矿区软硬互层型平缓反倾岩质斜坡采动变形破坏机理,以我国贵州省都匀市某煤洞坡为例,采用数值模拟方法,分析采动诱发软硬互层型平缓反倾岩质斜坡的变形破坏特征,讨论采动对坡体的作用规律,研究单工况采动和留煤柱下重复采动对坡体的变形破坏机理。研究结果表明:靠近坡表工作面开采和留煤柱下重复采动对坡体的稳定性影响较大;采动裂隙首先集中于采空区两侧并向上发展,软硬夹层间产生离层裂隙的可能性一般较大;留煤柱可防止坡体沉陷破碎,但也可能加剧坡体稳定性下降。研究结果可为软硬互层型平缓反倾岩质斜坡地下开采时,有效预防诱发山体失稳等地质灾害提供理论参考。  相似文献   
32.
某水电站是澜沧江中、下游梯级开发的关键工程,其进水口高边坡地质条件复杂。通过对该电站进水口边坡的物质组成、结构特征、以及边坡开挖等因素的综合分析研究,阐述了其变形机理,说明此高边坡存在如下变形破坏形式:①楔形体滑动破坏;②扩展式的平面型塌滑和滑移型崩塌破坏;③卸荷松弛变形破坏。采用三维块体分析和有限元数值模拟,分析了这类边坡在开挖过程中的应力变形特征及其变化规律。  相似文献   
33.
为进一步探究高地应力隧道软岩大变形控制技术,以中义隧道主洞片理化玄武岩段为工程背景,提出大变形Ⅰ型支护、大变形Ⅱ型支护、大变形Ⅱ型支护(围岩加固)3种大变形控制方案,以现场试验段监测为辅助验证,采用数值仿真对3种控制方案的控制效果进行对比分析。结果表明:适宜的支护成环时间具有减缓大变形的作用;在衬砌各部位累计最大变形控制方面,控制方案3较其他方案衬砌最大变形最少减小20.8%,且变形时程曲线最终收敛;围岩最大日变形量控制方面,经过开挖断面的进一步优化以及边墙部位塑性区围岩自承能力的提高,控制方案3最大日变形量较其他支护方案至少减小20.8%。结果显示控制方案3能够稳定控制片理化玄武岩大变形,且效果最好,研究结果可为类似工程提供设计依据。  相似文献   
34.
膨胀泥岩浸水后常常导致地基等上拱变形病害,为研究膨胀泥岩浸水膨胀变形规律,以兰新铁路第二双线一处典型膨胀地段泥岩为研究对象,对3种不同厚度的重塑泥岩分别进行不同吸水量下的大比例膨胀变形模型试验,模型尺寸为100 cm×60 cm×50 cm(长×宽×高)。试验结果表明:不同厚度膨胀时程曲线随浸水量分级增加呈"阶梯形"增长,前期浸水膨胀变形量增长迅速,随含水量增加逐渐变缓,土体膨胀速率与渗透速率密切相关;浸水初期土体含水量由浸水管向四周梯度递减,膨胀变形量与含水量具有一致性。膨胀变形量增加随吸水量增加逐渐减小,膨胀变形量与吸水量呈良好的双曲线关系。厚度越大,膨胀变形量也越大,且膨胀变形量增加随厚度增加逐渐减小,土体厚度作为上覆荷载对膨胀量起抑制作用。  相似文献   
35.
在日本阪神地震中遭受地震破坏的地铁地下结构中,仅大开车站中标准段一处区域发生了完全塌毁,其它地铁车站、隧道的震害程度均相对其要轻微。利用能够合理模拟地下框架结构损伤破坏的数值分析模型,对大开车站标准段、中央大厅段以及区间隧道结构的地震破坏反应进行了数值模拟分析,探讨了造成上述现象的原因。结果表明:不同断面宽度以及埋深导致大开车站标准段、中央大厅段以及区间隧道结构所受的上覆土压不同,使三者立柱在地震作用中处于不同的轴压比状态下工作,并使得三者不同刚度的结构框架在地震作用中出现不同程度的损伤与刚度退化,继而导致三者立柱出现了不同程度的水平相对变形。最终大开站标准段立柱由于较高的轴压比下受到过量的水平相对变形而发生破坏,从而导致整体框架结构的严重破坏;其余二者则由于立柱处于较低的轴压比下,所受水平相对变形处于立柱变形能力范围内,而未发生立柱破坏,进而使得整体框架保持了承载能力。  相似文献   
36.
陕北子长县阎家沟黄土滑坡特征及其变形机制   总被引:1,自引:1,他引:0  
野外调查和钻探资料显示,阎家沟滑坡属大型黄土滑坡,滑坡体为中、晚更新世黄土.在滑坡前缘流水侵蚀坡脚和滑坡体上修建窑洞、梯田、排放生活用水等人类工程活动影响下以及在2002年7月4日连续强降雨的激发下,目前处于不稳定状态,若遇强降雨失稳概率很大.填埋滑坡体裂隙和孔洞、加强地表排水、在滑坡体前缘沟谷修建淤地坝是提高陕北此类滑坡稳定性最为经济有效的措施.  相似文献   
37.
针对盾构隧道施工侧穿既有建筑物问题,结合南京地铁一号线北延段工程,以盾构隧道侧穿某浅基础建筑物为研究对象,通过对建筑物沉降实测数据进行分析,并利用Plaxis 3D 软件建立数值模型,研究了隧道距建筑物不同水平距离和盾构以不同角度穿越对建筑物差异沉降与扭曲变形特征的影响。结果表明:随着盾构开挖面逐渐接近建筑物,建筑物差异沉降及扭曲变形逐渐增大;差异沉降量在盾构机通过时达到最大值,之后趋于稳定,而扭曲变形峰值出现在盾构开挖面到达建筑物中点截面位置时,随后逐渐减小;当建筑物中心至隧道轴线的水平距离与隧道外径之比L/D=0.5~2 时,建筑物差异沉降量较大,在L/D=1.5 时达到峰值;当盾构穿越夹角从θ=0°增大至θ=90°时,建筑物最大差异沉降量不断增加,而最终扭曲变形值则先增大后减小,在θ=45°时扭曲变形达到峰值。研究结果可为盾构隧道侧穿浅基础建筑物时相关类似工程提供参考。  相似文献   
38.
崩塌一旦发生,往往带来严重的生命财产损失。2017年8月28日10时30分左右贵州省纳雍县张家湾镇普洒村发生了灾难性的高位崩塌地质灾害,摧毁了普洒村居民区房屋,还有26人遇难,9人失踪,8人受伤。查明崩塌的基本特征及现场工程地质条件变得尤为重要,有利于找出诱发崩塌的关键性因素,分析崩塌的形成机制及运动过程,为此类灾害防治及早期识别提供理论依据。文中通过现场调查、无人机航拍、现场视频和已有地质资料查明斜坡工程地质条件、斜坡特征,分析崩塌运动过程,采用3DEC离散元数值模拟方法,对高陡斜坡在地下开采作用下崩塌所产生的机理、失稳模式、运动轨迹进行了全过程模拟,并将数值模拟结果与崩塌实际过程进行对比。结果表明:通过3DEC模拟地下开采诱发的崩塌过程,发现斜坡在地下开采的扰动下会产生大规模的崩塌。普洒崩塌的主要过程为:(1)煤矿的开采过程中,斜坡受到扰动,加剧岩体产生变形,上覆岩体出现开裂塌陷现象,坡顶出现拉裂缝;(2)采空区形成后,整个坡体出现不均匀沉降,裂缝进一步向下扩展,岩体破碎趋向临空面倾倒,开始脱离坡表,形成崩塌;(3)坡顶岩体变形剧烈,斜坡整体失稳,发生大规模崩塌;(4)崩塌块体间冲...  相似文献   
39.
村庄下倾斜煤层条带开采方法研究   总被引:4,自引:0,他引:4  
针对我国"三下"(建筑物下、水体下、铁路下)压煤条带开采的实际情况,根据国内外有关条带开采的实践经验和技术要求,采用极限强度理论和压力拱理论对村庄下倾斜煤层条带开采进行了分开采深度设计,计算得出了条带开采的采出宽度和保留宽度;应用条带开采地表移动参数的模糊优化理论对概率积分法预计参数进行了选取,按照不同的开采深度,对村庄范围内的地表移动和变形值进行预计;根据预计的结果,对计算得出的条带开采尺寸进行检验和优化。研究表明,村庄下分采深条带开采尺寸设计和分采深地表沉陷预计,不仅可以提高地下煤炭资源的采出率,实现村庄在不搬迁情况下安全开采,也可最大限度地减小地下开采对地表建筑物的损害。  相似文献   
40.
滑坡动态变形过程的综合研究方法   总被引:3,自引:2,他引:1  
影响滑坡变形破坏过程的因素具有复杂性和多变性,要合理评价和预测滑坡的动态发展过程,深入的地质原型调查是基础,地质分析不仅能为其它分析方法的正确使用提供资料,而且能直接对滑坡的变形破坏发展过程作出定性的判断。在此基础上建立力学模型,采用数学力学理论进行定量计算和反演分析,可进一步从本质上去把握滑坡变形破坏的发展规律。本文通过介绍李家峡水电站Ⅱ号滑坡的研究实践,说明了采用定性地质分析与定量力学计算相结合的研究方法揭示滑坡变形破坏动态过程的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号