首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   23篇
  国内免费   167篇
安全科学   12篇
废物处理   5篇
环保管理   8篇
综合类   193篇
基础理论   114篇
污染及防治   15篇
评价与监测   17篇
社会与环境   2篇
  2024年   7篇
  2023年   30篇
  2022年   27篇
  2021年   33篇
  2020年   25篇
  2019年   20篇
  2018年   10篇
  2017年   21篇
  2016年   21篇
  2015年   24篇
  2014年   22篇
  2013年   28篇
  2012年   36篇
  2011年   14篇
  2010年   14篇
  2009年   10篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  1997年   1篇
  1990年   1篇
排序方式: 共有366条查询结果,搜索用时 78 毫秒
81.
建立了水、沉积物及土壤中13种全氟化合物(PFCs)的富集、净化、浓缩的前处理方法及快速液相色谱三重四级杆串联质谱的分析方法。9种全氟羧酸、2种典型全氟磺酸、2种磺酰铵衍生前体物的响应因子与质量浓度的线性关系良好。添加回收实验表明,13种全氟化合物在水、土壤和沉积物中的回收率为52.3%~119.3%,变异系数为2.3%~19.4%,方法检出限分别为0.015~0.472 ng/L、0.012~0.875 ng/g、0.004~0.743 ng/g。该法成功应用于实际样品的测定,沉积物和土壤中分别检测到3种和10种全氟化合物。  相似文献   
82.
以膨胀珍珠岩(expanded perlite,EP)为载体,以钛酸正丁酯和硝酸镧为前驱体,采用浸渍法制备出掺杂镧的漂浮型La-TiO2/EP光催化剂,采用X-射线粉末衍射研究了催化剂的形态结构。以正辛烷为模拟水面烃类污染物,通过超声波辅助对此催化剂的吸附与光催化性能进行了研究。结果表明:以20~40目的膨胀珍珠岩为载体制备的5%La-TiO2/EP,经500℃焙烧2 h后对辛烷的去除效果最好。超声波可促进辛烷在催化剂表面的吸附与迁移,超声辅助下辛烷去除率可提高11.08%。  相似文献   
83.
分析了全氟辛烷磺酰基化合物(PFOS)危害农业安全的几种途径,并对其危害机理进行了讨论,提出了降低PFOS危害农业安全的几点建议,并总结了PFOS作为新型POPs对于农业安全危害的特点。  相似文献   
84.
以好氧颗粒污泥为接种污泥,通过全氟辛烷磺酸(PFOS)长期驯化实现耐PFOS颗粒的培养,考察不同驯化时期的污泥基本特性,并结合微生物群落演替过程、微生物表型分布以及功能途径的变化情况,以揭示其耐受机制.结果表明,好氧颗粒污泥经历解体、再形成和成熟3个阶段后可在PFOS暴露下稳定维持.驯化成熟后的好氧颗粒污泥表面丝状菌减少,并且被大量胞外聚合物(EPS)所包裹,结构更加致密.驯化期间颗粒污泥中存在大量抗性细菌以及维持颗粒稳定相关细菌,主要包括unclassified_f__Comamonadaceae、Defluviicoccus、Dongia、Rhodoplanes、Flavobacterium、Thauera、Azospira、Candidatus_Competibacter、Azoarcus和norank_f__A4b,且部分菌属间存在显著的正相关性.群体感应途径和细菌趋化途径相关基因丰度在解体期上调,在颗粒形成和成熟期恢复至初始水平,说明细菌的群体感应效应和趋化性能够在颗粒应激过程中起重要作用.因此,好氧颗粒污泥可以通过特定菌群积极响应、促进细菌趋化作用和群体感应作用、提高EPS...  相似文献   
85.
为揭示城市水环境中前驱体对全氟烷基酸(PFAAs)输入特征、分布格局及健康风险的影响,对南京城市污水处理厂出水、河流、湖泊、长江饮用水源地等水体进行了考察.利用HPLC-MS/MS及总可氧化前驱体法(TOP Assay)分析了17种PFAAs与其总可氧化前驱体的污染特征,并通过推演耐受剂量评估了饮水途径的健康风险商(HQ).结果表明,污水处理厂出水中PFAAs浓度90.6~278ng/L,主要单体PFBS、PFHxA、PFOA占总浓度的63%;总可氧化前驱体浓度239~839pmol/L,PFBA前驱体含量最高.城市地表水中PFAAs浓度61.8~157ng/L,总可氧化前驱体浓度195~572pmol/L,PFBA、PFPe A、PFHxA3种全氟羧酸的前驱体含量最高,城市河流流经人口密集区后,PFAAs赋存浓度有所上升,但总可氧化前驱体浓度下降.饮用水源地中PFAAs浓度50.9~54.6ng/L,总可氧化前驱体浓度273~372pmol/L,以PFBA、PFPe A和PFHx A3种全氟羧酸的前驱体为主.相对高风险来源于PFOS的免疫毒性(HQ=0.024)以及PFOA的发育毒性...  相似文献   
86.
SPE-HPLC/MS联用法测定地表水中的PFOA及PFOS含量   总被引:29,自引:0,他引:29  
张倩  张超杰  周琪  陈玲 《四川环境》2006,25(4):10-12,28
本文建立了固相萃取与高效液相色谱/质谱(HPLC/MS)联用的方法来测定地表水中全氟辛酸(PFOA)及全氟辛烷基磺酸(PFOS)的含量。此方法中PFOA在水样中的线性范围为40ng/L到500ng/L,线性相关系数0.9986,PFOS在水样中的线性范围为5n异/L到500ng/L,线性相关系数0.9905。此方法中全氟辛酸及全氟辛烷基磺酸的平均回收率分另13为83.91%和86.63%。水样中全氟辛酸和全氟辛炕基磺酸的检出限均为0.5ng/L。方法准确、可靠,分析结果令人满意。采用此方法测定了上海部分地区地表水中全氟辛酸及全氟辛烷基磺酸的含量。实验结果表明,上海地区长江入海口处徐六泾段全氟辛酸的平均浓度是46.88ng/L,全氟辛烷基磺酸未检出;黄浦江段全氟辛酸及全氟辛烷基磺酸的平均浓度分别是1594.83ng/L(前处理后需稀释10倍以确保在方法线性范围内)和20.46ng/L。可见长江及黄浦江流域的全氟辛酸及全氟辛烷基磺酸的控制与治理亟待提上议程。  相似文献   
87.
为阐明南太湖地区传统和新兴的全氟和多氟烷基物质(PFASs)的残留分布,并分析这类污染物对当地人类的潜在健康风险,本研究检测了从中国南太湖流域采集的6种常见可食用鱼的4种组织(肝脏、肾脏、脾脏和肌肉)中的PFASs浓度.在所有鱼类组织中,全氟辛烷磺酸(PFOS)以483 ng·g-1湿重的高浓度占据主导地位,其次是全氟壬酸(PFNA)、全氟十一酸(PFUnDA)和全氟十二酸(PFDA)也拥有较高浓度.与传统全氟烷基酸(PFAAs)相似,新兴污染物6∶2氟调聚物磺酸盐(6∶2 FTS)和8∶2氟调聚物磺酸盐(8∶2 FTS)在鱼的肝脏中含量最高,然而全氟辛烷磺酰胺(PFOSA)在肾脏和脾脏中含量较高,这可能是由于其在鱼体内发生生物转化.鱼类体内的PFAS浓度可能与鱼类生活的水位和捕食习惯有关,在中下层水域活动的底栖肉食性鱼类体内的PFAS浓度更高.经计算,所有鱼类的全氟辛烷羧酸(PFOA)和PFOS的危害比(HRs)分别为0~0.0134和0.660~1.54,在6种鱼类中,花?和红鳍鲌的HRs超过1.0,这意味着经常食用这两种从南太湖采集的鱼类,可能危害食用者的身...  相似文献   
88.
全氟二甲基环丁烷示踪剂吸附采样   总被引:1,自引:0,他引:1  
借助气相色谱基本原理,测定了全氟二甲基环丁烷大气示踪剂通过Carboxen-569碳分子筛吸附管的分配系数,考察了温度和采样速度对穿透体积和安全采样体积的影响,确定了示踪剂吸附采样的基本参数吸附剂用量为150mg,吸附采样温度≤40℃,采样速度为200mL/min,样品解吸温度为200℃.  相似文献   
89.
自来水处理工艺对溶解相中全氟化合物残留的影响   总被引:2,自引:1,他引:1  
为探究自来水原水到出厂水各处理环节对自来水中全氟化合物(perfluorinated compounds,PFCs)残留的影响,了解原水中PFCs的季节性变化规律,应用WAX固相萃取分离富集与高效液相色谱-质谱联用相结合的方法,分析了深圳市某自来水厂一年间原水、出厂水及絮凝池、沉降池、砂滤池、臭氧+活性炭池出水溶解相中13种PFCs的残留水平.结果表明,原水和出厂水中ΣPFCs残留呈春夏高而秋冬低的趋势,检出的PFCs呈中短链(C≤10)长链(C≥11)的分布,而全氟辛烷磺酸是PFCs最典型残留种态.在原水经过的5个处理环节中,臭氧+活性炭、沉降和砂滤具有PFCs去除效应,然而絮凝和液氯消毒却分别使短链(C≤6)和中链(10≥C≥7)PFCs显著上升,导致出厂水中ΣPFCs浓度较原水增加了10%~44%.但出厂水中PFCs残留远低于其限值,尚不足以影响人体健康.  相似文献   
90.
针对兰州市某污水处理厂的夏季出水中含有的全氟辛酸化合物,用健康风险评价的方法,对城市污水处理厂出水用于城市绿化灌溉时接触人群的暴露水平和健康风险做了较为系统的研究,通过健康风险评价模型的建立以及对职业和非职业人群暴露评价分别计算出了全氟辛酸的危险度。结果表明:职业人群的健康危害总风险值为:1.46E-11~2.32E-11;非职业人群的健康危害总风险值为:5.99E-13~9.55E-13,均小于不可接受健康危险水平10E-9,即USEPA规定的非致癌物质危害风险率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号