首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   149篇
  国内免费   531篇
安全科学   110篇
废物处理   40篇
环保管理   64篇
综合类   936篇
基础理论   260篇
污染及防治   193篇
评价与监测   23篇
社会与环境   20篇
灾害及防治   24篇
  2024年   30篇
  2023年   72篇
  2022年   78篇
  2021年   104篇
  2020年   64篇
  2019年   82篇
  2018年   44篇
  2017年   49篇
  2016年   57篇
  2015年   80篇
  2014年   110篇
  2013年   68篇
  2012年   80篇
  2011年   77篇
  2010年   94篇
  2009年   72篇
  2008年   86篇
  2007年   67篇
  2006年   79篇
  2005年   53篇
  2004年   44篇
  2003年   26篇
  2002年   21篇
  2001年   25篇
  2000年   28篇
  1999年   8篇
  1998年   9篇
  1997年   12篇
  1996年   4篇
  1995年   16篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   4篇
  1987年   1篇
排序方式: 共有1670条查询结果,搜索用时 15 毫秒
81.
王朔  王羽  赵元慧  # 《生态毒理学报》2017,12(3):681-686
不同暴露途径下有机物在生物体内的吸收分布不同,导致毒性效应亦不同,研究化学品在不同暴露途径下对生物体的毒性,对化学品的安全性评价有实际意义。本文通过研究静脉注射、腹腔注射、肌肉注射与经口灌胃4种暴露途径下527个有机物对大鼠的急性毒性数据相关性,比较了不同暴露途径下大鼠对有机污染物的敏感度顺序,结果为:静脉注射>腹腔注射>肌肉注射>经口灌胃途径,静脉注射途径下log1/LD50与其他几种注射途径下的log1/LD50有较显著的相关性,但是与灌胃途径下毒性值之间的相关性较差,相关系数r的范围为0.82~0.97。通过逐项分析研究不同暴露途径下化合物对大鼠的急性毒性与生物利用度、吸收速率、消除速率以及代谢过程的关系,结果表明,导致这种差异的原因主要是有机污染物在大鼠体内的吸附动力学过程不同所致。  相似文献   
82.
常温低基质厌氧氨氧化反应器启动及其稳定性   总被引:5,自引:0,他引:5  
以上向流生物滤池为反应器,以实验室内氧化沟回流污泥为接种污泥,采用先培育好氧生物膜,后转为厌氧环境培育厌氧氨氧化生物膜的方式,成功实现了常温低基质浓度下厌氧氨氧化反应器的启动。控制反应器进水pH为7.50~7.80,NH4+-N为30~40 mg/L,NO2--N为35~50 mg/L,温度为20~25℃。224 d以后,反应器启动成功。在稳定运行阶段,出水亚硝氮和氨氮的平均浓度分别为1.4 mg/L和4.6 mg/L,平均去除率分别为95.3%和90.1%,去除比例为1~1.8∶1,主要集中在1.4~1.5∶1,亚硝氮和氨氮去除的容积负荷分别为104.2 mg/(L.d)和146.0 mg/(L.d)。  相似文献   
83.
通过基质对马拉硫磷的等温吸附和吸附动力学实验,研究天然土壤、煤渣、沸石、砾石对马拉硫磷的吸附特性,为人工湿地处理含马拉硫磷废水提供理论依据.结果表明:马拉硫磷浓度为2.25 ~ 90 mg/L条件下,Langmuir和Freundlich方程均能较好地拟合4种基质对马拉硫磷的等温吸附过程,并且Freundlich方程的拟合效果要好于Langmuir方程.马拉硫磷的理论饱和吸附量大小依次为天然土壤(9.9304 mg/g)>煤渣(1.6173 mg/g)>沸石(0.6039 mg/g)>砾石(0.3965 mg/g).4种基质对马拉硫磷的缓冲能力大小依次为天然土壤>煤渣>沸石>砾石,即当进水马拉硫磷浓度波动较大时,作为湿地基质天然土壤使人工湿地系统维持稳定出水水质的能力最强.马拉硫磷浓度为4.5 mg/L条件下,吸附动力学模型Elovich方程能较好地拟合4种基质对马拉硫磷的吸附动力学特征,说明4种基质对马拉硫磷的吸附是表面吸附和内部扩散吸附共同作用的结果.因此,天然土壤和煤渣适宜作为处理含马拉硫磷废水的人工湿地基质.  相似文献   
84.
在比较了不同基质脱氮效率的基础上,认为基质作为人工湿地的重要组成部分,在为植物和微生物提供生长介质的同时,也能通过沉淀、过滤和吸附等作用直接去除污染物质,其中基质的类型、级配等因素会影响基质作用的发挥;不同基质对脱氮性能存在较大差异,沸石和蛭石是目前研究中脱氮效率较高的两种基质。在归纳了脱氮机制和影响因素的基础上,认为不同基质由于脱氮机制不同,脱氮性能和脱氮效率也存在较大差异;人工湿地基质所有理化性状都可能影响到它对污水的脱氮效率。最后,对今后的相关研究方向进行了展望。  相似文献   
85.
以壤土、河砂为填充基质,构建了5个无砾石微孔管地下渗滤系统,在3.3 cm/d的水力负荷下,比较了5个系统对生活污水的处理效果.结果表明,无砾石微孔管地下渗滤系统对生活污水具有较好的处理效果,其中以上层填充河砂、下层填充壤土的系统C对生活污水的综合处理效果最好,其对COD、TP、浊度、NH3-N、TN的平均去除率分别为82.4%、74.1%、94.2%、98.4%、59.3%,相比传统的全部填充壤土的系统A分别提高了1.4、21.9、5.1、61.8、18.6百分点,且出水COD、TP、浊度、NH3-N、TN均达到了国家《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级标准.对系统NH3-N和TN的去除机制分析表明,碳氮比过低可能是导致TN去除效果不理想的主要原因.  相似文献   
86.
通过生物降解实验考察三氯乙烯(TCE)在苯酚驯化微生物中的共代谢降解性能,并进行动力学分析。结果表明,苯酚是TCE-苯酚共代谢过程必不可少的共代谢基质;TCE的共代谢降解与苯酚和TCE初始浓度有关。TCE在降解初期会出现一个短暂的迟滞期,TCE的大量降解要在苯酚被利用后才发生;高质量浓度TCE(>9mg/L)对共代谢降解有抑制作用。苯酚/TCE(质量比)在10~15以上时,苯酚菌对TCE的去除率较大。Haldane模型能够很好地拟合苯酚和TCE的比降解速率。动力学分析表明,微生物对苯酚的亲和力要大于TCE,苯酚对TCE共降解具有竞争性抑制作用,TCE对微生物存在毒性抑制作用;结果证实了生物降解实验的结论。  相似文献   
87.
以钼酸铵和氨水分别为钼源和氮源,采用溶胶-凝胶法制备了Mo-N-TiO2光催化剂,并对其进行了XRD、XPS和UV-visDRS表征。XRD结果表明,Mo、N共掺杂有效抑制了TiO2晶粒的生长,提高了TiO2由锐钛矿向金红石相的转变温度。UV-vis表明,Mo-N-TiO2光催化剂可见光吸收能力增强,吸收带边明显"红移",且钼酸铵添加量(相对TiO2)为0.5%的样品"红移"程度最大,最大吸收带边为550 nm。XPS分析结果表明,Mo取代了TiO2晶格中的部分Ti4+,以Mo6+形式存在的,而N以Ti—N及N—Ti—O形式存在。以罗丹明B为模型污染物,重点考察了钼酸铵添加量与焙烧温度对Mo-N-TiO2光催剂性能的影响。结果表明,400℃焙烧下、钼酸铵添加量为0.5%的样品催化活性最好。模拟太阳光下光照120min对罗丹明B的降解率达到96.8%,是纯TiO2的2.42倍。  相似文献   
88.
以钼酸铵和氨水分别为钼源和氮源,采用溶胶-凝胶法制备了Mo-N-TiO2光催化剂,并对其进行了XRD、XPS和UV-visDRS表征。XRD结果表明,Mo、N共掺杂有效抑制了TiO2晶粒的生长,提高了TiO2由锐钛矿向金红石相的转变温度。UV-vis表明,Mo-N-TiO2光催化剂可见光吸收能力增强,吸收带边明显"红移",且钼酸铵添加量(相对TiO2)为0.5%的样品"红移"程度最大,最大吸收带边为550 nm。XPS分析结果表明,Mo取代了TiO2晶格中的部分Ti4+,以Mo6+形式存在的,而N以Ti—N及N—Ti—O形式存在。以罗丹明B为模型污染物,重点考察了钼酸铵添加量与焙烧温度对Mo-N-TiO2光催剂性能的影响。结果表明,400℃焙烧下、钼酸铵添加量为0.5%的样品催化活性最好。模拟太阳光下光照120min对罗丹明B的降解率达到96.8%,是纯TiO2的2.42倍。  相似文献   
89.
湿地生态系统具有净化污水的功能,因其具有高效低耗等优点,在污水处理方面极具开发应用前景,而基质作为湿地生态系统重要组成部分,已成为众多学者的研究热点。本文综合分析了湿地生态系统基质中重金属积累和酶活性的时空分布及影响因素的研究现状,并对相关研究提出了新的认识与展望,以期为湿地生态系统基质去除废水中重金属的深入研究和应用提供综合分析资料。  相似文献   
90.
黄山市冬青科野生植物资源及其利用   总被引:1,自引:0,他引:1  
根据近年的调查研究,初步查清黄山市冬青科野生植物资源共有18种、2变种。叙述了这些野生植物的主要用途,并对其开发利用提出了建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号