全文获取类型
收费全文 | 290篇 |
免费 | 14篇 |
国内免费 | 42篇 |
专业分类
安全科学 | 114篇 |
环保管理 | 14篇 |
综合类 | 140篇 |
基础理论 | 32篇 |
污染及防治 | 12篇 |
评价与监测 | 10篇 |
社会与环境 | 2篇 |
灾害及防治 | 22篇 |
出版年
2023年 | 14篇 |
2022年 | 15篇 |
2021年 | 14篇 |
2020年 | 9篇 |
2019年 | 5篇 |
2018年 | 9篇 |
2017年 | 6篇 |
2016年 | 7篇 |
2015年 | 10篇 |
2014年 | 35篇 |
2013年 | 15篇 |
2012年 | 16篇 |
2011年 | 25篇 |
2010年 | 22篇 |
2009年 | 22篇 |
2008年 | 22篇 |
2007年 | 20篇 |
2006年 | 11篇 |
2005年 | 15篇 |
2004年 | 15篇 |
2003年 | 3篇 |
2002年 | 15篇 |
2001年 | 5篇 |
2000年 | 6篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
排序方式: 共有346条查询结果,搜索用时 0 毫秒
81.
82.
83.
84.
An intensive observation of organic carbon (OC) and element carbon (EC) in PM10 and gaseous materials (SO2, CO, and O3,) was conducted continuously to assess the characteristics of wintertime carbonaceous aerosols in an urban area of Beijing, China. Results showed that the averaged total carbon (TC) and PM10 concentrations in observation period are 30.2±120.4 and 172.6±198.3 μ/m3, respectively. Average OC concentration in nighttime (24.9±19.6 μ/m3) was 40% higher than that in daytime (17.7±10.9 μ/m3). Average EC concentrations in daytime (8.8±15.2 μ/m3) was close to that in nighttime (8.9±15.1 μ/m3). The OC/EC ratios in nighttime ranging from 2.4 to 2.7 are higher than that in daytime ranging from 1.9 to 2.0. The concentrations of OC, EC, PM10 were low with strong winds and high with weak winds. The OC and EC were well correlated with PM10, CO and SO2, which implies they have similar sources. OC and EC were not well correlated with O3. By considering variation of OC/EC ratios in daytime and night time, correlations between OC and O3, and meteorological condition, we speculated that OC and EC in Beijing PM10 were emitted as the primary particulate form. Emission of motor vehicle with low OC/EC ratio and coal combustion sources with high OC/EC ratio are probably the dominant sources for carbonaceous aerosols in Beijing in winter. A simple method was used to estimate the relative contribution of sources to carbonaceous aerosols in Beijing PM10. Motor vehicle source accounts for 80% and 68%, while coal combustion accounts for 20% and 32% in daytime and nighttime, respectively in Beijing. Averagely, the motor vehicle and coal combustion accounted for 74% and 26%, respectively, for carbonaceous aerosols during the observation period. It points to the motor vehicle is dominant emission for carbonaceous aerosols in Beijing PM10 in winter period, which should be paid attention to control high level of PM10 in Beijing effectively. 相似文献
85.
冬季生态浮床对浮游藻类数量及生物多样性的影响 总被引:1,自引:0,他引:1
为了考察生态浮床在冬季的运行效果,选择世博园区白莲泾生态浮床工程为研究对象,研究了冬季生态浮床对浮游藻类数量及生物多样性的影响。结果表明,取样期间浮游藻类生物总量逐月增加,且对照区明显高于浮床区;浮床区与对照区浮游藻类的种群结构差异明显,浮床区以硅藻门为主,而对照区以绿藻门为主。并且,小环藻与细微颤藻的优势度指数均有明显的下降。同时,浮床区的Shannon-Wiener多样性指数明显高于对照区。以上结果均证明,虽然在冬季较低温的情况下水生植物新陈代谢缓慢,但生态浮床仍会影响浮游藻类的数量及生物多样性,从而对水质净化起到一定的改善作用。 相似文献
86.
Investigation of air pollution concentration in Kathmandu valley during winter season 总被引:1,自引:0,他引:1
KONDO Akir KAGA Akikazu IMAMURA Kiyoshi INOUE Yoshio SUGISAWA Masahiko SHRESTHA Manohar Lal SAPKOTA Balkrishan 《环境科学学报(英文版)》2005,17(6):1008-1013
The monthly concentrations of NO2, NOx, SO2 and O3 measured by a passive sampler from February 2003 to January 2004 showed that the air pollution during the winter season in Kathmandu valley was higher than the summer season. The O3 level was found the highest during April, May and June due to strong radiation. The hourly concentrations of NO2, NOx, O3 and suspended particulate matter(SPM) were also measured by automatic instruments on December 2003. Temperature at the height of 60 m and 400 m at Raniban Mountain in the northwest of Kathmandu valley was measured on February 2001 in the winter season and the average potential temperature gradient was estimated from observed temperature. Wind speed was also measured at the department of hydrology, airport section, from 18 February to 6 March 2001. It was found that the stable layer and the calm condition in the atmosphere strongly affected the appearance of the maximum concentrations of NO2 and SPM in the morning, and that the unstable layer and the windy condition in the atmosphere was considerably relevant to the decrease of air pollution concentrations at daytime. The emission amounts of NOx, HCs and total suspended particle(TSP) from transport sector in 2003 were estimated from the increasing rate of vehicles on the basis of the emission amounts in 1993 to be 3751 t/a, 30570 t/a and 1317 t/a, respectively. The diurnal concentrations in 2003 calculated by the two-layers box model reproduced the characteristics of air pollution in Kathmandu valley such as the maximum value of O3 and its time, the maximum value of NO in the morning, and the decrease of NO and NO2 at daytime. The comparison with the concentrations in 1993 calculated suggested that the main cause of air pollution was the emission from transport sector. 相似文献
87.
针对人工湿地在低温条件下处理效果较差的问题,为提高潜流人工湿地冬季运行效果。采用活性污泥挂膜和表面覆盖地膜的强化方式,开展冬季运行试验,分析试验人工湿地冬季运行经强化措施后的处理效果。结果表明,通过强化措施后,各指标平均去除效果都有较大提高,COD去除率由25%提升至49%、TN去除率由27%提升至45%、TP去除率由29%提升至51%。 相似文献
88.
北京市典型绿化灌木阻滞吸附PM2.5能力研究 总被引:1,自引:0,他引:1
选取北京市典型绿化灌木物种大叶黄杨、小叶黄杨、紫叶小檗、矮紫杉,结合气室模拟与实地观测的方法,综合测定不同树种对PM2.5的吸附能力.同时,收集2012年12月~2013年5月间北京市区PM2.5浓度值,分析了北京市冬春季PM2.5污染特征.结果表明,由气室实验得到的4种植物对PM2.5阻滞吸附能力排序为:紫叶小檗>小叶黄杨>矮紫衫>大叶黄杨,其原因主要为叶片特征差异所致;室外测量结果表明,4种物种吸附能力排序为:小叶黄杨>紫叶小檗>矮紫衫>大叶黄杨.气室模拟与室外实测结果均表明,小叶黄杨和紫叶小檗具有较强的阻滞吸附PM2.5的能力;气室模拟与室外观测实验中植物阻滞吸附PM2.5能力的大小略有差异,其原因应与植物结构相关.同时,通过分析北京市PM2.5浓度的季节性变化,发现北京市冬季的PM2.5浓度值尤为高,且常绿灌木植物仍能表现出较好的阻滞吸附PM2.5的能力. 相似文献
89.
90.