首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1317篇
  免费   170篇
  国内免费   404篇
安全科学   95篇
废物处理   294篇
环保管理   98篇
综合类   955篇
基础理论   148篇
污染及防治   287篇
评价与监测   12篇
灾害及防治   2篇
  2024年   15篇
  2023年   46篇
  2022年   54篇
  2021年   80篇
  2020年   64篇
  2019年   65篇
  2018年   30篇
  2017年   33篇
  2016年   52篇
  2015年   72篇
  2014年   115篇
  2013年   74篇
  2012年   60篇
  2011年   75篇
  2010年   57篇
  2009年   58篇
  2008年   70篇
  2007年   73篇
  2006年   71篇
  2005年   92篇
  2004年   83篇
  2003年   70篇
  2002年   71篇
  2001年   61篇
  2000年   41篇
  1999年   59篇
  1998年   43篇
  1997年   28篇
  1996年   31篇
  1995年   27篇
  1994年   31篇
  1993年   26篇
  1992年   20篇
  1991年   12篇
  1990年   14篇
  1989年   16篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1891条查询结果,搜索用时 899 毫秒
601.
贫燃发动机由于燃烧充分具有比燃料利用率高、动力输出高、HC和CO排放量少等优点,但在燃烧过程中却产生了大量的NOx。目前,研究新型贫燃条件下NOx的净化催化剂成为当前催化领域研究的热点。本文主要介绍了目前脱除贫燃条件下NOx净化催化剂的国内外研究现状,并指出今后的研究方向提供参考。  相似文献   
602.
Highly active, air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents. Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture, water/propanol mixture and neat water respectively, the corresponding yields of cross-coupling heteroaryl-aryls were satisfied. The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPd1 and POPd2, and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3. The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step. Compared with other solid phase transfer catalysts, TBAB was tested as the ideal one. The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents. Notably, in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products. However in terms of the liquid phase transfer catalyst of PEGs, mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase, which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.  相似文献   
603.
在低温选择性催化还原(SCR)反应条件下考察了烟气残余SO2对Mn/TiO2和Mn-Ce/TiO2催化剂选择性催化还原活性的影响,同时对SO2的影响机理进行了探讨.结果发现,Mn/TiO2催化剂在SO2反应气氛中失活很快,硫铵盐的沉积和活性组分的硫酸化是催化剂失活的重要原因;Ce的加入可以有效地抑制催化剂活性组分的硫酸化,同时还能降低硫酸盐在催化剂表面的稳定性,从而可以提高催化剂的抗硫性.  相似文献   
604.
采用等体积浸渍法制备了锰氧化物负载凹凸棒石(MnOx/PG)低温SCR催化剂,通过SO2暂态响应、程序升温表面反应(TPSR)等实验技术研究了烟气中SO2对催化剂SCR脱硝活性的影响行为.采用程序升温脱附(TPD)、BET比表面及孔径分布测定、XPS等表征技术对催化剂硫中毒的机理及化学本质进行了深入分析.结果表明,低温下烟气中SO2对MnOx/PG催化剂的SCR脱硝活性存在显著的抑制作用,催化剂中毒主要由烟气中SO2的催化氧化引起.一方面SO2氧化为SO3后与NH3及H2O竞争反应形成复杂的硫酸铵盐堵塞催化剂孔道,另一方面与活性组分MnO2结合形成MnSO4使得部分活性组分形态发生变迁.其中硫酸铵盐的形成可通过适当的热处理得以去除,而MnSO4则不可恢复,但催化剂SCR活性却显著增加,表明MnSO4的形成不是催化剂失活的主要因素.吸附态的硫可显著增加催化剂表面酸性,因此对SCR活性有促进作用.催化剂失活主要机理为:由气相SO2的连续氧化并与NH3相结合形成硫酸铵盐,并且在低温下难以分解,以致堵塞催化剂活性中心.  相似文献   
605.
Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-δS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-δS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m^2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi^5+, Bi^3+, V^5+, V^3+, Fe^3+, and Fe^2+ species in y wt.% FeOx/BiVO4-δS0.08. The 1.40 wt.% FeOx/BiVO4-δS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower baudgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-δS0.08.  相似文献   
606.
针对印染废水高有机物、高色度、水质水量变化大的特点,研究开发处理效率高,适应性强的印染废水处理集成工艺,具有重要的现实意义 采用多相催化臭氧化工艺对印染废水进行试验研究.结果表明:采用浸渍法制备出的负载型铁锰氧化物催化剂FexOy+MnOx/AC较单组分催化剂具有更好的活性及稳定性;经多相催化臭氧氧化处理后,印染废水COD、氨氮、总磷、色度去除率分别为81.7%、90.2%、93.4%、99.1%,达到较好的去除效果.  相似文献   
607.
Co基催化剂在低碳烷烃直接脱氢及氧化脱氢制烯烃方面表现出良好的应用潜力.为了探究Co物种的价态对CO2氧化乙烷脱氢制乙烯的影响,以共沉淀法制备的TiZrO4固溶体为载体,采用浸渍法制备了一系列X%Co/TiZrO4(X=0.5、1、3、5和7.5)催化剂.结果表明,0.5%Co/TiZrO4和1%Co/TiZrO4催化剂的催化活性较差,但保持了相当高的C2H4选择性(>90%)和碳平衡(≈100%);3%Co/TiZrO4催化剂在反应过程中表现出良好的C2H6和CO2活化能力,在650℃、质量空速WHSV=9000 mL?g-1?h-1的反应条件下获得了约25%的乙烯收率;而5%Co/TiZrO4和7.5%Co/TiZrO4催化剂则在600℃及以上温度反应...  相似文献   
608.
在追求废弃物资源化利用的过程中,生物质转化技术受到广泛关注。水热碳化法目前被认为是将高含水率生物质转化为生物炭的最有效技术之一,其与传统的热解炭相比,获得的水热炭具有灰分低、热值高、比表面积大、吸附能力强等特点。然而,生物质原料的差异需要更高的能耗优化,以此提高水热炭产率和性能。添加催化剂可以克服这一问题,对提高原料的反应速率及水热炭热稳定性具有重要意义,但少有文献归纳总结催化剂在生物质水热碳化过程中的应用。将催化剂分为盐类、酸类、金属氧化物、沸石和组合催化5种类型,探讨添加催化剂对水热炭产率和理化性质的影响,分析各类催化剂的催化反应机理,总结其在水热碳化中的催化特点,并讨论了催化剂在生物质水热碳化中未来重点研究方向。  相似文献   
609.
左旋氧氟沙星(LEV)是常见的抗生素之一,抗生素排入环境造成的污染是人类面临的环境问题之一,选择高效快速对其降解的研究具有重要意义。该研究采用简单的共价固载模式,以β-环糊精(β-CD)为载体,通过键连和共沉淀的方法合成NiCo2O4@β-CD催化过一硫酸盐(PMS),在优选的实验体系即NiCo2O4@β-CD/PC体系(PC为PMS及碳酸盐)中,通过在不同体系中改变PMS投加量、催化剂(NiCo2O4@β-CD)投加量、碳酸盐投加量以及加入不同阴离子考察体系对LEV的降解效果,同时在最佳条件下进行了催化剂的循环实验和自由基捕获实验。结果表明,500 mg/L浓度的PMS作为降解LEV(10 mg/L)的最佳氧化剂量。催化剂浓度达到50 mg/L,碳酸根离子浓度达到60 mg/L的体系降解效果最佳。Cl-会加快LEV降解速率,但会减少LEV反应趋于平衡时的降解率,SO42-的加入对实验体系降...  相似文献   
610.
过氧乙酸[PAA,CH3C(O)OOH]作为一种新兴的氧化剂,在处理污水中难降解有机污染物中受到了越来越多的关注.通过蚀刻方法制备出纳米核壳Co@NC催化剂,并将其用于活化PAA降解污水中磺胺甲■唑(SMX).结果表明,当控制催化剂投加量为0.02 g·L-1、PAA浓度为0.12mmol·L-1和SMX浓度为10μmol·L-1时,反应5 min时SMX的去除率即可达到98%,且降解SMX的速率常数为0.80 min-1.SMX降解效率随催化剂添加量和PAA浓度提高而显著增加.结果发现核壳Co@NC/PAA体系在近中性条件下(pH为6.0~8.0)可获得最佳的SMX降解效果,酸性或碱性条件均不利于SMX去除.HCO-3和腐殖酸对该催化体系存在显著抑制,而Cl-抑制作用较弱.此外,通过自由基淬灭实验和电子顺磁共振(EPR)研究发现,乙酰氧自由基(CH3CO2·)和乙酰过...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号