首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2421篇
  免费   262篇
  国内免费   1249篇
安全科学   84篇
废物处理   117篇
环保管理   178篇
综合类   2630篇
基础理论   175篇
污染及防治   720篇
评价与监测   22篇
社会与环境   6篇
  2024年   30篇
  2023年   72篇
  2022年   141篇
  2021年   142篇
  2020年   110篇
  2019年   148篇
  2018年   110篇
  2017年   97篇
  2016年   119篇
  2015年   136篇
  2014年   207篇
  2013年   140篇
  2012年   158篇
  2011年   154篇
  2010年   158篇
  2009年   190篇
  2008年   207篇
  2007年   178篇
  2006年   195篇
  2005年   150篇
  2004年   143篇
  2003年   113篇
  2002年   94篇
  2001年   75篇
  2000年   78篇
  1999年   56篇
  1998年   64篇
  1997年   67篇
  1996年   46篇
  1995年   56篇
  1994年   55篇
  1993年   69篇
  1992年   54篇
  1991年   43篇
  1990年   43篇
  1989年   29篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有3932条查询结果,搜索用时 515 毫秒
961.
投加Fe3O4能够在一定程度上强化有机物的厌氧降解过程,而进水有机负荷是影响厌氧系统处理效率的重要因素.本研究通过分阶段提升进水有机负荷,对比考察了Fe3O4的加入对UASB厌氧反应器运行效能及污泥性质的影响.结果表明,当有机负荷低于3.2 kg·m-3·d-1时,两反应器内有机物厌氧水解效率并无显著性差别.而当有机负荷提升至6.4、12.8、25.6 kg·m-3·d-1时,Fe3O4对有机物厌氧水解效率表现出一定的促进效果,且有机负荷越高,Fe3O4对厌氧水解的促进效果越显著.与此同时,Fe3O4对厌氧产甲烷过程也表现出明显的促进作用,在有机负荷分别为1.6、3.2、6.4、12.8、25.6 kg·m-3·d-1时,添加Fe3O4的反应器中平均甲烷产率分别为对照组的3.55、2.37、1.26、1.16和1.06倍.这一现象表明Fe3O4对产甲烷过程的促进效果与有机负荷密切相关,且有机负荷越低,Fe3O4对厌氧产甲烷效率的增强作用越明显.此外,本研究还分析了运行过程中污泥粒径和胞外聚合物的变化,发现Fe3O4的加入可以有效促进厌氧污泥颗粒化进程.  相似文献   
962.
为高效处理玉米淀粉生产废水,启动并持续运行了一个四格室厌氧折流板反应器(ABR),通过分阶段提升进水COD的方法,探讨了有机负荷率(OLR)对ABR运行效能的影响,并采用间歇培养方式考察了OLR对沿程格室中不同营养类型产甲烷菌群活性的影响.结果表明,在OLR分阶段从2.7提高到8.0 kg·m-3·d-1的过程中,ABR前两个格室(C1和C2)始终呈现出典型的产酸发酵特征,其污泥的有机挥发酸(VFAs)比产率为0.54~0.76 kg·kg-1·d-1(以每天每千克MLVSS产出的1千克有机挥发酸计,下同),而后两个格室(C3和C4)则表现出典型的产甲烷特征,其污泥的比产甲烷速率达98 L·kg-1·d-1(以每天每千克MLVSS产出的1升甲烷计,下同)以上.活性污泥产甲烷活性测试结果表明,当OLR为2.7~8.0 kg·m-3·d-1时,C3中的氢营养型产甲烷菌群保持了较高的产甲烷活性,其最大甲烷产量(Pmax)和最大比产甲烷速率分别达到了20.4 mL和16.5 mL·g-1·h-1(以每小时每克MLVSS产出的1毫升甲烷计,下同)以上.乙酸营养型产甲烷菌群的累计甲烷产量由大到小依次为:C3 > C4 > C1 > C2.经过144 h的培养后,C3中乙酸营养型产甲烷菌群的累计甲烷产量为15.1~15.2 mL,最大比产甲烷速率为10.0~10.8 mL·g-1·h-1.  相似文献   
963.
羟胺对厌氧氨氧化污泥群落的影响   总被引:3,自引:2,他引:1  
目前,由于厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)过程具有高效率、低能耗和污泥量少的优点,在污水除氮方面具有广阔的应用前景.羟胺既是厌氧氨氧化代谢的中间产物,同时也是一种抑制剂,但是目前关于厌氧氨氧化细菌颗粒如何应对羟胺的压力还没有很好的解释.通过羟胺批次添加实验,发现在投加不同浓度的羟胺情况下(40~80mg·L~(-1)),厌氧氨氧化的反应活性受到了抑制作用,但是无法判断厌氧氨氧化细菌对羟胺的耐受阈值.然后基于实时荧光定量聚合酶链反应(RT-qPCR)技术检测了不同反应器内肼氧化酶(HZO)的mRNA的表达量,发现HZO酶的表达量随着羟胺浓度的增加出现先升高后降低的趋势,由此本研究推测相对于3.12g·L~(-1)的厌氧氨氧化颗粒污泥,其承受的羟胺浓度(以N计)阈值介于60~70mg·L~(-1).同时利用16S rRNA高通量测序的方法对反应器内的颗粒污泥微生物结构与功能进行分析,发现投加适量的羟胺(50mg·L~(-1))有助于增强颗粒污泥中细菌的细胞运动性,促进厌氧氨氧化细菌的组成,提供一个更佳的生态平衡.  相似文献   
964.
王丝可  于恒  左剑恶 《环境科学》2020,41(11):5082-5088
污水生物脱氮工艺中通常会释放温室气体N2O,厌氧氨氧化工艺作为新型生物脱氮工艺,其N2O的释放规律及机制值得深入研究.本文利用厌氧氨氧化序批试验,研究了不同温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响,并探讨了N2O释放的微生物机制.结果表明,厌氧氨氧化工艺中进水基质浓度的增加会促进N2O释放,在35℃条件下,当进水亚硝氮从40 mg ·L-1增加至60 mg ·L-1和120 mg ·L-1时,N2O最高积累浓度从0.5 mg ·L-1增加至1.5 mg ·L-1和2.4 mg ·L-1,分别占总氮去除量的0.85%、1.43%和1.11%.温度降低对厌氧氨氧化活性抑制作用明显,15℃下的比厌氧氨氧化活性仅为30℃时的6%.温度降低导致厌氧氨氧化工艺中N2O的释放减少,温度降低时反硝化速率的降低是导致N2O产生速率降低、N2O积累减少的主要原因.厌氧氨氧化工艺微生物群落中存在丰富的异养反硝化菌,工艺中N2O积累主要是反硝化菌产生和消耗N2O的结果.  相似文献   
965.
采用中试ASBR反应器(530 L),以逐步提高Cl~-浓度的方式考察了厌氧氨氧化菌(An AOB)处理高盐废水的脱氮特性.结果表明,采用逐步盐度驯化的方式,An AOB可适应高盐度(Cl~-浓度10 000 mg·L~(-1))环境进行高效脱氮(TN去除率高达92. 3%).其中,在Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)两个梯度内,反应器脱氮性能受到了较大影响,但随着驯化过程的持续进行可逐步恢复.修正的Boltzmann模型能较为准确地拟合An AOB受到不同盐度抑制后的活性恢复过程,相关系数R~2均在0. 96以上.得到的Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)时的恢复中间值tc分别为28. 765 d和44. 495 d,NRRmax分别为0. 145 kg·(m~3·d)~(-1)和0. 212 kg·(m~3·d)~(-1),NRRmin分别为0. 021 kg·(m~3·d)~(-1)和0. 085 kg·(m~3·d)~(-1).高盐度驯化后,厌氧氨氧化菌仍主要为Candidatus Brocadia和Candidatus Jettenia(其丰度分别是14. 76%和2. 7%),且污泥颗粒化程度和污泥密度均有不同程度的提高,污泥呈红褐色.  相似文献   
966.
房平  唐安平  付兴民  李伟  文洋  佟娟  魏源送 《环境科学》2018,39(11):5108-5115
污泥性质对预处理强化厌氧消化工艺的效果有较大影响.本研究对比了某实际污水厂A~2O工艺和A~2O-MBR工艺产生的剩余污泥在微波预处理-厌氧消化过程中污泥性质的变化与产气效果,并考察了在预处理和厌氧消化过程中污泥的古菌群落结构变化.结果表明,A~2O工艺剩余污泥有机质含量比A~2O-MBR污泥高出16. 4%(分别为66. 4%和50. 0%),SCOD、溶解性蛋白质和多糖分别为后者1. 24、2. 02和4. 84倍,具有更好的可生物降解性.虽然预处理对生物降解性差的A~2O-MBR污泥有机物释放效果更好,但A~2O污泥在微波预处理-厌氧消化后产甲烷量比相应处理后的A~2O-MBR污泥多26. 1%.两种剩余污泥的古菌群落结构差异较大,A~2O-MBR污泥中甲烷丝菌属和甲烷八叠球菌属丰度分别比A~2O污泥多3. 68%和19. 73%.预处理对古菌群落的丰富度和均匀度影响相对较小,但厌氧消化后波动较大.污泥中有机组分不同是引起古菌群落结构变化的重要影响因素.  相似文献   
967.
刘洋  陈永娟  王晓燕  许康利 《环境科学》2018,39(8):3677-3688
河流生态系统是陆地生态系统输出营养盐和有机质的主要接收器,是水-气界面CO2和CH4全球碳循环的重要环节.人类活动导致大量未经处理的硝酸盐和有机物质汇入河流,影响了N-DAMO(N-DAMO,Nitrate/nitrite-dependent anaerobic methane oxidation,反硝化厌氧甲烷氧化菌)细菌的群落特征.本文选取北运河作为研究区域,通过对比分析北运河中游和下游沉积物理化参数和N-DAMO细菌群落特征的差异性,探究由于人类活动的影响,河流沉积物中N-DAMO细菌的群落组成结构特征,及其与沉积物中NH+4-N、NO-3-N的响应关系.结果表明,北运河沉积物中NH+4-N为中游和下游氮素的主要形态,且下游NH+4-N浓度显著高于中游;人类活动对N-DAMO细菌16S rRNA和pmo A功能基因群落分布有影响,16S rRNA和pmo A功能基因均分别聚为中游和下游两类;系统发育树分析显示,人类活动影响北运河N-DAMO细菌高同源性菌群的来源,其高同源性菌群来源与北运河主要污染物氨氮的来源一致;RDA分析显示,人类活动影响N-DAMO细菌相关环境因子,沉积物中高浓度的NH+4-N、NO-3-N与16S rRNA和pmo A功能基因有显著的响应关系.沉积物N-DAMO细菌16S rRNA和pmo A功能基因的共生关系分析显示,北运河下游沉积物中N-DAMO细菌彼此之间的共存关系更强,细菌群落形成的模块化程度较高,其对环境变化的敏感程度更高,受人类活动的影响更大.  相似文献   
968.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   
969.
采用树脂吸附脱附的方法对厌氧膜生物反应器(AnMBR)中溶解性微生物代谢产物(SMP)的6种亲疏水性有机物进行了分离,其中,亲水中性物质是SMP的主要成分,占总有机物的74.84%.多糖、蛋白质和腐殖质类物质在亲疏水性有机物中均有分布.采用恒压死端过滤的方式对比分析了6种亲疏水性有机物的微滤特性,发现在TOC浓度相同的条件下,亲水性碱(HIB)是造成膜通量下降最快的物质,其次是亲水中性物(HIN)和疏水性酸(HOA),膜通量下降速率与有机物平均粒径呈指数相关关系(R2=0.9965).采用过滤模型对微滤过程进行拟合,HOA、HIN和HIB的过滤过程分别符合标准堵塞模型、中间过滤模型和滤饼过滤模型的特征,与其粒径分布特征相对应.试验进一步对比了亲疏水性有机物污染层的可逆性,结果表明HIN造成的膜污染不易通过物理反冲洗得到恢复.  相似文献   
970.
为强化潮汐流人工湿地(TFCW)中基于亚硝化的全程自养脱氮(CANON)作用,探究了不同排水速率(vd)下系统中氮素的迁移转化机制与微生物特征.结果表明,vd可显著影响TFCW中脱氮功能微生物的数量与活性,进而影响其氮素转化速率.当vd由1.00降至0.50L/min时,填料层中逐渐形成较为严格的限氧环境,有利于短程硝化的稳定和厌氧氨氧化菌的富集,进而有助于CANON反应体系在TFCW中形成.而当vd小于0.50L/min时,填料层中溶解氧相对不足,好氧氨氧化菌活性受到抑制,数量随之减少,CANON作用的强化效果有限,系统脱氮性能受到影响.当vd为0.50L/min时,TFCW中的CANON作用可得到最大限度的强化,系统脱氮性能达到最佳,其TN和NH4+-N的去除负荷分别为(116.79±13.16)和(102.75±4.35) mg/(L·d).对vd的合理设置可实现TFCW中CANON作用的强化,有利于CANON型人工湿地的构建.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号