全文获取类型
收费全文 | 343篇 |
免费 | 2篇 |
国内免费 | 4篇 |
专业分类
安全科学 | 3篇 |
废物处理 | 1篇 |
环保管理 | 39篇 |
综合类 | 179篇 |
基础理论 | 10篇 |
污染及防治 | 18篇 |
评价与监测 | 99篇 |
出版年
2023年 | 3篇 |
2022年 | 4篇 |
2021年 | 5篇 |
2020年 | 6篇 |
2019年 | 9篇 |
2018年 | 2篇 |
2017年 | 12篇 |
2016年 | 11篇 |
2015年 | 9篇 |
2014年 | 25篇 |
2013年 | 24篇 |
2012年 | 19篇 |
2011年 | 30篇 |
2010年 | 15篇 |
2009年 | 22篇 |
2008年 | 22篇 |
2007年 | 19篇 |
2006年 | 11篇 |
2005年 | 19篇 |
2004年 | 9篇 |
2003年 | 12篇 |
2002年 | 5篇 |
2001年 | 11篇 |
2000年 | 8篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 6篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 3篇 |
排序方式: 共有349条查询结果,搜索用时 15 毫秒
91.
采用高效液相色谱-氢化物发生-原子荧光光谱联用技术测定水中亚砷酸盐[As(Ⅲ)]、二甲基砷(DMA)、一甲基砷(MMA)和砷酸盐[As(V)]等4种形态砷,以磷酸盐缓冲溶液为流动相,硼氢化钾为还原剂,优化了仪器主要技术参数.As(Ⅲ)、DMA、MMA和As(V)在7 min内实现了良好的基线分离,在5.00 μg/L~... 相似文献
92.
建立了高效液相色谱(HPLC)-氢化物发生(HG)-原子荧光光谱(AFS)联用技术分析地表水及废水中甲基汞和乙基汞的方法。样品经二氯甲烷萃取,再以半胱氨酸+乙酸铵溶液反萃取富集,并进入高效液相色谱分离,经形态分析预处理装置后,借助原子荧光光谱法检测。在优化分离条件下,甲基汞和乙基汞在1~50μg/L范围内呈现良好的线性关系,对于标准水样、地表水和废水实际水样,加标平均回收率均为80%~110%。平行进样7次1μg/L的汞混合标准溶液,甲基汞和乙基汞的色谱峰面积的相对标准偏差分别为5.2%和3.9%,检出限则分别为0.4 ng/L和0.7 ng/L。该检测方法前处理简单、回收率稳定、灵敏度和准确度高、检出限低、杂质干扰少、监测费用低,便于在普通实验室推广和应用。 相似文献
93.
建立了王水水浴消解-原子荧光法测定土壤中砷汞的方法,确定还原剂为硼氢化钾,测砷和汞时硼氢化钾的最优质量分数分别为2%和0.05%,载流为5%盐酸。该法砷和汞分别在质量浓度0.0~40.0μg/L和0.00~4.00μg/L范围内线性良好,相关系数均0.999 5,砷和汞的检出限分别为0.009和0.001 mg/kg,相对标准偏差分别为3.90%和2.67%,加标回收率分别为94.1%~107.6%和92.0%~104.0%。采用本法对国家标准土壤样品和东海县部分农田土壤样品进行测定分析,结果良好,表明该法操作简单、灵敏度高、实用性好,适用于土壤中砷和汞的测定。 相似文献
94.
采用吹扫捕集/气相色谱-冷原子荧光法测定包装饮用水中烷基汞(甲基汞和乙基汞)。通过优化试剂和仪器条件,使方法在0.100 ng/L~10.0 ng/L范围内线性良好。当取样体积为25 mL时,甲基汞和乙基汞的方法检出限分别为0.005 5 ng/L和0.004 2 ng/L,市售某品牌包装饮用天然泉水3个质量浓度水平的加标回收率为90.5%~106%,6次测定结果的RSD为0.4%~1.9%。将该方法用于各品牌包装饮用水样品的测定,甲基汞和乙基汞均为未检出。 相似文献
95.
96.
97.
氢化物原子荧光光度法测定饮用水中铅 总被引:4,自引:0,他引:4
随着工业"三废"、汽车尾气大量排放及铅农药广泛使用,检测饮用水中铅的含量,对人体健康具有重要意义.目前铅的测定方法多采用石墨炉原子吸收法和示波极普法,但前者仪器昂贵,后者精密度差.本文采用流动氢化物原子荧光光度法测定饮用水中铅,方法操作简便,灵敏度高,检测限为2.5 μg/L,相对标准偏差为2.9%,样品测定的平均回收率为95%~104%,取得了满意的结果. 相似文献
98.
为了建立一种快速测定土壤中砷方法,用微波消解仪对土壤样品进行消解,通过AFS-3100双道原子荧光光度计,选择最佳的仪器条件,及酸度,硼氢化钾浓度,测定土壤中的砷.本法线性关系砷为0~10 μg/L,相关系数0.9994,检出限砷为0.003μg/L.本方法操作简单,灵敏度高,快速,适于土壤中砷的测定. 相似文献
99.
100.