全文获取类型
收费全文 | 2149篇 |
免费 | 892篇 |
国内免费 | 1061篇 |
专业分类
安全科学 | 205篇 |
废物处理 | 75篇 |
环保管理 | 96篇 |
综合类 | 2643篇 |
基础理论 | 218篇 |
污染及防治 | 769篇 |
评价与监测 | 62篇 |
社会与环境 | 18篇 |
灾害及防治 | 16篇 |
出版年
2024年 | 110篇 |
2023年 | 159篇 |
2022年 | 212篇 |
2021年 | 216篇 |
2020年 | 211篇 |
2019年 | 224篇 |
2018年 | 168篇 |
2017年 | 160篇 |
2016年 | 210篇 |
2015年 | 181篇 |
2014年 | 220篇 |
2013年 | 160篇 |
2012年 | 157篇 |
2011年 | 180篇 |
2010年 | 155篇 |
2009年 | 192篇 |
2008年 | 175篇 |
2007年 | 152篇 |
2006年 | 172篇 |
2005年 | 144篇 |
2004年 | 123篇 |
2003年 | 114篇 |
2002年 | 61篇 |
2001年 | 45篇 |
2000年 | 35篇 |
1999年 | 32篇 |
1998年 | 28篇 |
1997年 | 23篇 |
1996年 | 15篇 |
1995年 | 20篇 |
1994年 | 17篇 |
1993年 | 12篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 8篇 |
1989年 | 4篇 |
1988年 | 1篇 |
排序方式: 共有4102条查询结果,搜索用时 15 毫秒
671.
采用厌氧序批式生物膜反应器(ASBBR),以固定浓度的硝酸盐和硫酸亚铁为基质,按不同梯度条件添加EDTA-2Na,进行长时间的培养驯化,研究铁盐脱氮的启动过程,同时探究不同EDTA-2Na/Fe(Ⅱ)对铁自养反硝化过程以及硝酸盐异化还原为铵(DNRA)的影响.结果表明:经过65d的培养驯化,反应器成功稳定运行.当EDTA-2Na/Fe(Ⅱ)<1.50时,反应器只进行铁自养反硝化过程,NO3--N去除率最高仅为71.70%;当EDTA-2Na/Fe(Ⅱ)≥1.50时,反应器同时进行铁自养反硝化与DNRA过程,NO3--N去除率最高为99.70%.值得注意的是,在EDTA-2Na/Fe(Ⅱ)=1.50时,铁自养反硝化速率达到最大值1.63mg/(L·h)的同时,DNRA的产氨量也达到最大值9.75mg/L.Visual MINTEQ模拟结果表明:EDTA-2Na与Fe(Ⅱ)的摩尔比会影响进水中EDTA-2Na与Fe(Ⅱ)的存在形态,物质的量比越大,FeEDTA2-度越高,Fe... 相似文献
672.
673.
采用包埋固定化技术制备了包埋硫铁生物填料(ESI Filler),基于升流式自养反硝化反应器开展动态实验研究,通过改变水力停留时间(HRT)、pH值、溶解氧(DO)等运行条件,探究ESI Filler反应器的脱氮效果及微生物群落结构组成。结果表明,当进水硝酸盐氮(NO3--N)浓度为30mg/L,HRT为10h时,NO3--N去除率不断上升至99.80%。当HRT缩短为2.5h时,NO3--N去除率降至61.35%。ESI Filler反应器对pH值和DO的改变具有较高的稳定性,NO3--N平去除率可维持在82.5%以上。但对低温的耐受性较差,当温度从35℃降低至15℃时,NO3--N平均去除率由90.12%降低至68.80%。运行164d后,球体未出现破裂散落的现象,表现出较长的使用寿命。通过扫描电镜发现,填料表面疏松多孔,附着大量杆状细菌,已成为微生物的良好载体。高通量测序结果表明,包埋颗粒中优势菌属为典型的自养反硝化功能菌Thiobacillus,丰度为80.79%。 相似文献
674.
短程反硝化耦合厌氧氨氧化(PD-A)工艺外加碳源和曝气成本较低、NO2 −生成稳定高效、总氮去除率高,并且可以减少温室气体N2O的排放,是一种新型的生物脱氮工艺。现有关于PD-A的研究多以水质条件单一的模拟废水为对象,针对实际废水的研究尚少。分析了PD-A工艺的机制与特点,通过对比核心功能菌短程反硝化菌和厌氧氨氧化菌的最佳生长条件,并结合现有研究提出PD-A工艺运行的优化策略,继而分析了PD-A工艺在实际废水中的应用案例。结果表明,优化COD/NO3 −、接种不同结构的污泥和添加生物膜载体等有利于工艺高效稳定地运行;PD-A工艺在实际生活污水、养殖废水、高硝酸盐废水的处理中实现了较高的脱氮率,说明其处理实际废水具有可行性。最后,对PD-A工艺的发展进行展望,认为应以实际废水为处理对象,进一步研究系统内核心菌群的协同作用机制和混合生物脱氮调控方式,以提升工艺的稳定性及碳氮协同处理效率。
相似文献675.
676.
2019年3月1日~2019年5月31日期间采用Syntech Spectras GC955在线气相色谱仪对杭州市大气环境中挥发性有机物(VOCs)进行了在线连续监测,分析了VOCs体积分数的组成特征、 PM2.5和O3协同控制的优控VOCs物种和VOCs特征污染物比值.结果表明,烷烃是VOCs体积分数中最重要的组分,贡献了62.40%. C2~C6的烷烃、苯系物、乙烯和乙炔是VOCs关键物种.烯烃和芳香烃是OFP的主要贡献组分,贡献率分别为41.35%和37.50%.芳香烃是SOA的主要贡献者,贡献率超过90%.低碳的烷烃、低碳烯烃和苯系物是OFP的关键贡献物种,控制好甲苯、间/对-二甲苯和邻-二甲苯这3种苯系物,是O3和PM2.5协同控制的关键.采样点大气中VOCs除了受机动车尾气的影响外,溶剂使用等工业排放的影响也较为显著. 相似文献
677.
为深入探究重污染地区气溶胶的消光特征和健康风险,于2019年冬季开展了太原市PM2.5主要化学成分和氧化潜势的分析.采样期间ρ(PM2.5)为(89.9±33.6)μg·m-3,其中水溶性离子和碳质气溶胶分别占到43.3%和33.8%,浓度较高的组分依次为:OC>SO42->NO-3>EC>NH+4>Cl->Ca2+.随着污染程度的增加,PM2.5中有机物(OM)和矿物尘的占比下降了5.8%和11.2%,而SNA(NO-3、 SO42-和NH+4)的质量分数由33.9%显著增加到56.0%.基于IMPROVE公式估算,太原市冬季大气颗粒物的平均消光系数为(453... 相似文献
678.
研究稻菜轮作模式下土壤甲烷(CH4)和氧化亚氮(N2 O)排放对不同施肥措施的响应,对补充我国热带地区CH4和N2 O排放研究的不足具有重要的指导意义.在辣椒季设置4种施肥处理:磷钾肥(PK)、氮磷钾肥(NPK)、等氮条件下50%有机肥替代化肥(NPK+M)和100%有机肥替代(M),水稻种植季未设置施肥处理,研究辣椒季不同施肥条件下CH4和N2 O的排放规律以及对早稻生长季水稻产量、CH4和N2 O排放的后续影响.采用密闭静态箱-气相色谱法测定稻菜轮作土壤CH4和N2 O,同时测定作物产量,并估算全球增温潜势(GWP)和温室气体排放强度(GHGI).结果表明:①辣椒季和早稻季4种施肥处理下土壤CH4的累积排放量分别为0.9~2.7 kg ·hm-2和5.5~8.4 kg ·hm-2,与NPK处理相比,辣椒季NPK+M和M处理CH4累积排放量分别减少35.3%和7.6%;而早稻季NPK+M和M处理CH4累积排放量均增加37.5%和55.1%,其中早稻季M处理达到显著水平.②辣椒季和早稻季4种施肥处理下N2 O的累积排放量分别为0.5~3.0 kg ·hm-2和0.3~0.5 kg ·hm-2,相对NPK处理,辣椒季NPK+M和M处理降低33.7%和16.0%的N2 O累积排放量,其中NPK+M处理达到显著差异,早稻季NPK+M处理N2 O累积排放量降低23.5%,M处理却增加9.1%,但均未达到显著水平.③ 4种施肥处理下辣椒和早稻的产量分别为3055.6~37722.5 kg ·hm-2和5850.9~6994.4 kg ·hm-2,与NPK处理相比,NPK+M和M处理显著增加辣椒产量.各施肥处理GWP为508.0~1864.4 kg ·hm-2,NPK+M和M处理相对NPK处理分别下降25.7%和5.7%,其中NPK+M处理达到显著差异.辣椒季各处理的GWP对总GWP的贡献率为69.2%~78.1%,N2 O对总GWP的贡献率为77.3%~85.3%.辣椒季和早稻季GHGI分别为0.03~0.09 kg ·kg-1和0.04~0.24 kg ·kg-1,与NPK处理相比,辣椒季M和NPK+M处理使GHGI显著下降71.5%和54.7%,早稻季NPK+M和M处理GHGI值分别下降44.0%和20.8%,其中NPK+M处理达到显著差异.综合作物产量及温室气体减排效果考虑,化肥和有机肥配施(NPK+M)可推荐为海南稻菜轮作模式下一种最优的减排稳产的施肥措施. 相似文献
679.
680.
移动床生物膜反应器(MBBR)被广泛应用于污水厂的提标改造,而短程硝化是当前众多新型脱氮工艺的关键环节,研究短程硝化泥膜混合MBBR系统可为污水厂脱氮工艺的升级奠定基础。填充率作为MBBR的重要工艺参数,极大地影响系统的运行效能。试验在4个MBBR泥膜混合系统中(填充率分别为100%、75%、45%、15%),开展了长达224 d的短程硝化运行研究。结果表明:在填充率为45%的系统中,亚硝酸盐积累率较为稳定达到99.42%,平均氨氧化速率较高为16.62 mg/(L·h)。微生物特征分析显示,在门水平,变形菌门、惰杆菌门和绿弯菌门等在各个系统中为优势菌门。在属水平,好氧氨氧化菌的优势菌属为Nitrosomonas,其在填充率为45%的反应器内占比最高,在絮状污泥和生物膜上分别占比24.67%、30.73%。研究检测出亚硝酸氧化菌的优势菌属为Nitrospira,其在各反应器中占比较低,说明亚硝酸氧化菌被有效抑制。 相似文献